首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   3篇
测绘学   22篇
大气科学   7篇
地球物理   10篇
地质学   10篇
海洋学   1篇
天文学   13篇
自然地理   9篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2014年   3篇
  2013年   4篇
  2012年   1篇
  2011年   8篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1995年   1篇
  1991年   1篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
  1972年   1篇
排序方式: 共有72条查询结果,搜索用时 671 毫秒
41.
Abstract

Eight types of reflections are interpreted from 3,800 km of 3.5 kHz profiles taken over a 25,000 km2 area of the upper continental slope and shelf in the northeastern Gulf of Mexico off Panama City, Florida. The corresponding sediments in five of the reflection types were sampled in 77 piston cores from which data were obtained on in situ acoustic velocities (V), bulk densities (gr), sediment texture (mean grain size = Mz), CaCO3 content (C), sedimentary structures, and gross sediment composition. A distinct bottom echo with numerous subbottom reflectors (Type I) is observed in deeper areas where terrigenous clay or lutite (Mgi = 9.9 to, gr = 1.4 g/cc, porosity (P) = 74 percent, C = 28 percent, and V (upper 2 m) = 1,435 m/s) predominates. Type I reflection grades upslope into Type IV, which shows a distinct bottom echo with fewer subbottom reflectors, and the corresponding sediment is a foraminiferal silty clay (mz = 9.4 to, gr = 1.43 g/cc, P = 73 percent, V = 1,447 m/s, and C = 37 percent). The uppermost slope gives indistinct, semiprolonged bottom echoes with faint subbottoms (Type VI) where calcareous silt (Mz = 6.6 to, gr = 1.57 g/cc, P = 65 percent, C = 70 percent, and V = 1,482 m/s) is the main sediment type. The shelf sediments (gr = 1.66 g/cc, P = 58 percent, V = sl1,530 m/ s), varying from coarse silt (Mz = 5.3 to) to very coarse sand (Mz = ‐0.3 to) and 25 to 100 percent carbonate, show indistinct, semiprolonged bottom echoes with intermittent or mushy subbottoms (Type VII). Prolonged echoes with no subbottoms (Type VIII) are observed in areas where algal sands of variable grain size (Mz ‐ ‐0.9 to 2.7 to, gr = 1.66 g/cc, P = 59 percent, V = 1,530 to 1,690 m/s) occur.

The major trends in reflection types (loss in depth of penetration, loss in number of reflectors, and prolongation of initial bottom reflections) follow gradients of sedimentary and physical properties of the sediments, which are increases in mean grain size, bulk density, in situ acoustic velocity, CaCO3 content, and decrease in porosity. Increases in the reflection coefficient and attenuation of the sound energy in the shelf sediments are probably important factors in the observed decrease in the depth of penetration of the sound energy in the shelf sediments.  相似文献   
42.
This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dumenil  相似文献   
43.
Capture of Mo by FeS2 is an important sink for marine Mo. X-ray spectroscopy has shown that Mo forms Mo-Fe-S cuboidal clusters on pyrite. Reduction of MoVI must occur to stabilize these structures. Sulfide alone is a poor reductant for Mo, producing instead a series of MoVI thioanions (MoOxS4−x2−, x = 0-3). In solutions that contain both H2S and S0-donors (i.e. polysulfides; dissolved S8), Mo is transformed to MoIV or MoV2 polysulfide/sulfide anions. This intramolecular reduction requires no external reducing agent. Remarkably, an oxidizing agent (S0 donor), rather than a reducing agent, stabilizes the reducible MoVI complex. Thiomolybdates and their reduction products do not precipitate spontaneously; solutions supersaturated by 109 with respect to molybdenite, MoS2, produce no precipitate in 40 days. In 10-minute exposures, pyrite can scavenge MoOS32− and MoS42− weakly at mildly alkaline pH but can scavenge an unidentified product of the S0-induced reduction of MoOS32− very strongly. On the basis of these observations, a reaction pathway for Mo capture by pyrite is proposed. Conditions that favor Mo capture by this pathway also favor pyrite growth. Ascribing Mo capture simply to low redox potential is too simplistic and neglects the likely role of oxidizing S0-donors. The aqueous speciation of Mo in anoxic environments will be a function of the activity of zero-valent sulfur as well as the activity of H2S(aq).  相似文献   
44.
Laboratory experiments on reagent-grade calcium carbonate and carbonate rich glacial sediments demonstrate previously unreported kinetic fractionation of carbon isotopes during the initial hydrolysis and early stages of carbonate dissolution driven by atmospheric CO2. There is preferential dissolution of Ca12CO3 during hydrolysis, resulting in δ13C-DIC values that are significantly lighter isotopically than the bulk carbonate. The fractionation factor for this kinetic isotopic effect is defined as εcarb. εcarb is greater on average for glacial sediments (−17.4‰) than for calcium carbonate (−7.8‰) for the < 63 μm size fraction, a sediment concentration of 5 g L−1 and closed system conditions at 5°C. This difference is most likely due to the preferential dissolution of highly reactive ultra-fine particles with damaged surfaces that are common in subglacial sediments. The kinetic isotopic fractionation has a greater impact on δ13C-DIC at higher CaCO3:water ratios and is significant during at least the first 6 h of carbonate dissolution driven by atmospheric CO2 at sediment concentrations of 5 g L−1. Atmospheric CO2 dissolving into solution following carbonate hydrolysis does not exhibit any significant equilibrium isotopic fractionation for at least ∼ 6 h after the start of the experiment at 5°C. This is considerably longer than previously reported in the literature. Thus, kinetic fractionation processes will likely dominate the δ13C-DIC signal in natural environments where rock:water contact times are short <6-24 h (e.g., glacial systems, headwaters in fluvial catchments) and there is an excess of carbonate in the sediments. It will be difficult apply conventional isotope mass balance techniques in these types of environment to identify microbial CO2 signatures in DIC from δ13C-DIC data.  相似文献   
45.
The Ordos Plateau in China is a region with extensive wind erosion, severe desertification and various aeolian sand hazards. In order to determine aeolian sand transport in this region, the relationship between the sand transport rate and wind speed at 10 min frequencies was established by field observation in both the Qubqi Sand Desert and the Mu Us Sandy Land. Threshold wind speeds (2 m above the ground) for mobile, semi-fixed and fixed dune surfaces were estimated by field observations. The sand transport rate increased with the increase of the bare land ratio and near-bed wind speed. High-resolution meteorological 10 min average wind velocity data at 10 m above the ground were converted into velocity values at a height of 2 m to calculate sand transport potential based on three specific parameters decisive for sand transport: wind speed, duration and direction. The quantity of aeolian sand transported was calculated for various wind speed levels and directions, and the overall characteristics of sand transport on different dune surface types were determined by vector operation techniques. Sand transporting winds took place mainly in springtime. The prevailing wind directions were W, WNW and NW, with a frequency of more than 60% in total, and sand transport in these directions made up more than 70% of the total transport, corresponding to a general southeastward encroachment of aeolian sand in the study area. The relationship between wind frequency and speed can be expressed by a power function. High magnitude strong winds had a low frequency, but they played a dominant role in aeolian sand transport.  相似文献   
46.
Understanding the environmental factors determining the distribution of species with different range sizes can provide valuable insights for evolutionary ecology and conservation biology in the face of expected climate change. However, little is known about what determines the variation in geographical and elevational ranges of alpine and subalpine plant species. Here, we examined the relationship between geographical and elevational range sizes for 80 endemic rhododendron species in China using Spearman’s rank-order correlation. We ran the species distribution model – maximum entropy modelling (MaxEnt) – with 27 environmental variables. The importance of each variable to the model prediction was compared for species groups with different geographical and elevational range sizes. Our results showed that the correlation between geographical and elevational range sizes of rhododendron species was not significant. Climate-related variables were found to be the most important factors in shaping the distributional ranges of alpine and subalpine plant species across China. Species with geographically and elevationally narrow ranges had distinct niche requirements. For geographical ranges, the narrow-ranged species showed less tolerance to niche conditions than the wide-ranged species. For elevational ranges, compared with the wide-ranged species, the narrow-ranged species showed an equivalent niche breadth, but occurred at different niche position along the environmental gradient. Our findings suggest that over large spatial extents the elevational range size can be a complementary trait of alpine and subalpine plant species to geographical range size. Climatic niche breadth, especially the range of seasonal variability, can explain species’ geographical range sizes. Changes in climate may influence the distribution of rhododendrons, with the effects likely being felt most by species with either a narrow geographical or narrow elevational range.  相似文献   
47.
We present our second paper describing multiwaveband time-resolved spectroscopy of WZ Sge. We analyse the evolution of both optical and IR emission lines throughout the orbital period and find evidence, in the Balmer lines, for an optically thin accretion disc and an optically thick hotspot. Optical and IR emission lines are used to compute radial velocity curves. Fits to our radial velocity measurements give an internally inconsistent set of values for K 1, γ and the phase of red-to-blue crossing. We present a probable explanation for these discrepancies, and provide evidence for similar behaviour in other short orbital period dwarf novae. Selected optical and IR spectra are measured to determine the accretion disc radii. Values for the disc radii are found to be strongly dependent on the assumed WD mass and binary orbital inclination. However, the separation of the peaks in the optical emission line (i.e., an indication of the outer disc radius) has been found to be constant during all phases of the supercycle period over the last 40 years.  相似文献   
48.
We present the first of two papers describing an in-depth study of multiwaveband phase-resolved spectroscopy of the unusual dwarf nova WZ Sge. In this paper we present an extensive set of Doppler maps of WZ Sge covering optical and infrared emission lines, and describe a new technique for studying the accretion discs of cataclysmic variables using ratioed Doppler maps. Applying the ratioed Doppler map technique to our WZ Sge data shows that the radial temperature profile of the disc is unlike that predicted for a steady state α disc. Time-averaged spectra of the accretion disc line flux (with the bright spot contribution removed) show evidence in the shapes of the line profiles for the presence of shear broadening in a quiescent non-turbulent accretion disc. From the positions of the bright spots in the Doppler maps of different lines, we conclude that the bright spot region is elongated along the ballistic stream, and that the density of the outer disc is low. The velocity of the outer edge of the accretion disc measured from the H α line is found to be 723±23 km s−1. Assuming that the accretion disc reaches to the 3:1 tidal resonance radius, we derive a value for the primary star mass of 0.82 M. We discuss the implications of our results on the present theories of WZ Sge type dwarf nova outbursts.  相似文献   
49.
We describe the fall of the Dingle Dell (L/LL 5) meteorite near Morawa in Western Australia on October 31, 2016. The fireball was observed by six observatories of the Desert Fireball Network (DFN), a continental-scale facility optimized to recover meteorites and calculate their pre-entry orbits. The 30 cm meteoroid entered at 15.44 km s−1, followed a moderately steep trajectory of 51° to the horizon from 81 km down to 19 km altitude, where the luminous flight ended at a speed of 3.2 km s−1. Deceleration data indicated one large fragment had made it to the ground. The four person search team recovered a 1.15 kg meteorite within 130 m of the predicted fall line, after 8 h of searching, 6 days after the fall. Dingle Dell is the fourth meteorite recovered by the DFN in Australia, but the first before any rain had contaminated the sample. By numerical integration over 1 Ma, we show that Dingle Dell was most likely ejected from the Main Belt by the 3:1 mean motion resonance with Jupiter, with only a marginal chance that it came from the ν6 resonance. This makes the connection of Dingle Dell to the Flora family (currently thought to be the origin of LL chondrites) unlikely.  相似文献   
50.
An analysis of the UV oscillations in WZ Sge is presented, in which we obtain the oscillation amplitude spectra. We find a strong 27.9-s oscillation in our Hubble Space Telescope ( HST ) UV and zeroth-order light curves as well as weaker oscillations at 28.4 s in the UV and 29.1 s in the zeroth order. We find that the main oscillation amplitude spectrum can be fitted with static white dwarf spectra of about 17 000 K, an accretion hotspot of only a few 100 K hotter than the underlying white dwarf temperature or a variety of cool (<14 500 K) white dwarf pulsation amplitude spectra. A pulsating white dwarf can also explain the very blue colour of oscillations of different periods previously found in the optical. Comparing our results with those of Welsh et al., we see that the amplitude spectra of the main oscillations in WZ Sge measured with different periods in data sets from different epochs are similar to each other. Our results raise questions about using the magnetically accreting rotating white dwarf model to explain the oscillations. We suggest that the pulsating white dwarf model is still a viable explanation for the oscillations in WZ Sge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号