首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   347篇
  免费   14篇
  国内免费   2篇
测绘学   13篇
大气科学   31篇
地球物理   135篇
地质学   95篇
海洋学   29篇
天文学   40篇
自然地理   20篇
  2022年   1篇
  2021年   6篇
  2020年   6篇
  2019年   6篇
  2018年   8篇
  2017年   11篇
  2016年   8篇
  2015年   4篇
  2014年   19篇
  2013年   17篇
  2012年   12篇
  2011年   22篇
  2010年   24篇
  2009年   30篇
  2008年   15篇
  2007年   14篇
  2006年   14篇
  2005年   21篇
  2004年   5篇
  2003年   11篇
  2002年   10篇
  2001年   7篇
  2000年   5篇
  1999年   5篇
  1998年   4篇
  1997年   6篇
  1996年   1篇
  1995年   7篇
  1994年   4篇
  1993年   8篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1983年   5篇
  1982年   5篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   3篇
  1973年   2篇
排序方式: 共有363条查询结果,搜索用时 296 毫秒
151.
Land use and land cover (LULC) change detection associated with oil and gas activities plays an important role in effective sustainable management practices, compliance monitoring, and reclamation assessment. In this study, a mapping methodology is presented for quantifying pre- and post-disturbance LULC types with annual Landsat Best-Available-Pixel multispectral data from 2005 to 2013. Annual LULC and land disturbance maps were produced for one of the major conventional oil and gas production areas in West-Central Alberta with an accuracy of 78% and 87%, respectively. The highest rate of vegetation loss (178 km2/year) was observed in coniferous forest compared to broadleaf forest, mixed forest, and native vegetation. Integration of ancillary oil and gas geospatial data with annual land disturbances indicated that less than 20% of the total land disturbances were attributable to oil and gas activities. In 2013, approximately 44% of oil and gas disturbances from 2005 to 2013 showed evidence of vegetation recovery. In the future, geospatial data related to wildfire, logging activities, insect defoliation, and other natural and anthropogenic factors can be integrated to quantify other causes of land disturbances.  相似文献   
152.
The effect of a thin viscous fluid–mud layer on nearshore nonlinear wave–wave interactions is studied using a parabolic frequency-domain nonlinear wave model, modified to incorporate a bottom dissipation mechanism based on a viscous boundary layer approach. The boundary-layer formulation allows for explicit calculation of the mud-induced wave damping rate. The model performed well in tests based on laboratory data. Numerical tests show that damping of high frequency waves occurs, mediated by “difference” nonlinear interactions. Simulations of 2-dimensional wave propagation over a mud “patch” of finite extent show that the wave dissipation causes significant downwave diffraction effects.  相似文献   
153.
As soon as the first data became available online over the Internet, it was obvious that different sites holding related datasets should appear to the end user as a single data system, even if the data itself is stored at multiple locations. To achieve this objective in the context of continuing parallel development of multiple data centres, in 2003 several actors in the realm of space plasmas created the international consortium Space Physics Archive Search and Extract (SPASE). Since 2005 US participation in SPASE has been supported by NASA, and early in 2006 NASA funded five new Virtual Observatories to cater for different aspects of solar system plasma science. This paper outlines the current status of the SPASE effort, the opportunities it offers, its specificities with respect to other parts of the astronomical virtual observatory, and the possibilities it offers for space weather.
Christopher C. HarveyEmail:
  相似文献   
154.
Over the past 35 years, the Upper Penticton Creek (UPC) Watershed Experiment has supported forest hydrology research in south-central British Columbia (BC), Canada. This paper provides a synthesis of research results, highlights the challenges facing UPC and identifies new research directions. Clearcutting approximately 50% of two small, snow-dominated (Dfb Koppen classification) watersheds advanced the timing of snowmelt-generated high flows and decreased late-summer low flows, relative to predictions based on pre-treatment regressions. Changes in high flows did not have a significant effect on stream channels due to low stream power, coarse substrate, and limited riparian disturbance. Changes in summer low flows reduced modelled useable fish habitat by 20%–50%. Evaporation averaged 52% of the annual precipitation in the mature forest, was reduced to 30% in a clearcut, and recovered to 40% and 47% in a 10 and 25 year-old stand, respectively. Groundwater recharge to the bedrock was estimated at 19% of annual precipitation, indicating that, even with the large uncertainty associated with this estimate, deep groundwater should not be ignored in the water balance. Suspended sediment, turbidity, and colour increased post-logging; however, chemical surface water quality did not change. Aquatic community structure changed post-logging; and although this affected the processing of organic matter, the effects on habitat quality were considered minimal. The information gained at UPC has supported provincial policies, management guidelines, forest stewardship plans and watershed risk assessments. The undisturbed control watershed, re-growing treatment watersheds and ongoing long-term hydrometric monitoring continue to provide opportunities for future research addressing issues such as the effects of young forests on streamflow and hydrologic recovery, and the influence of climate change on the hydrologic regime.  相似文献   
155.
156.
157.
Groundwater, surface water, and soil in the Goose Lake oil field in northeastern Montana have been affected by Cl-rich oil-field brines during long-term petroleum production. Ongoing multidisciplinary geochemical and geophysical studies have identified the degree and local extent of interaction between brine and groundwater. Fourteen samples representing groundwater, surface water, and brine were collected for Sr isotope analyses to evaluate the usefulness of 87Sr/86Sr in detecting small amounts of brine. Differences in Sr concentrations and 87Sr/86Sr are optimal at this site for the experiment. Strontium concentrations range from 0.13 to 36.9 mg/L, and corresponding 87Sr/86Sr values range from 0.71097 to 0.70828. The local brine has 168 mg/L Sr and a 87Sr/86Sr value of 0.70802. Mixing relationships are evident in the data set and illustrate the sensitivity of Sr in detecting small amounts of brine in groundwater. The location of data points on a Sr isotope-concentration plot is readily explained by an evaporation-mixing model. The model is supported by the variation in concentrations of most of the other solutes.  相似文献   
158.
Toll NJ  Rasmussen TC 《Ground water》2007,45(1):101-105
The effects of barometric pressure and earth tide changes are often observed in ground water level measurements. These disturbances can make aquifer test interpretation difficult by masking the small changes induced by aquifer testing at late times and great distances. A computer utility is now available that automatically removes the effects of barometric pressure and earth tides from water level observations using regression deconvolution. This procedure has been shown to remove more noise then traditional constant barometric efficiency techniques in both confined and unconfined aquifers. Instead of a single, instantaneous barometric efficiency, the procedure more correctly accounts for the lagged responses caused by barometric pressure and earth tide changes. Simultaneous measurements of water levels (or total heads) and nearby barometric pressures are required. As an additional option, the effects of earth tides can also be removed using theoretical earth tides. The program is demonstrated for two data sets collected at the Waste Isolation Pilot Plant, Carlsbad, New Mexico. The program is available free by request at http://www.hydrology.uga.edu/tools.html.  相似文献   
159.
Models for contaminant transport in streams commonly idealize transient storage as a well mixed but immobile system. These transient storage models capture rapid (near‐stream) hyporheic storage and transport, but do not account for large‐scale, stage‐dependent interaction with the alluvial aquifer. The objective of this research was to document transient storage of phosphorus (P) in coarse gravel alluvium potentially influenced by large‐scale, stage‐dependent preferential flow pathways (PFPs). Long‐term monitoring was performed at floodplain sites adjacent to the Barren Fork Creek and Honey Creek in northeastern Oklahoma. Based on results from subsurface electrical resistivity mapping which was correlated to hydraulic conductivity data, observation wells were installed both in higher hydraulic conductivity and lower hydraulic conductivity subsoils. Water levels in the wells were monitored over time, and water samples were obtained from the observation wells and the stream to document P concentrations at multiple times during high flow events. Contour plots indicating direction of flow were developed using water table elevation data. Contour plots of total P concentrations showed the alluvial aquifer acting as a transient storage zone, with P‐laden stream water heterogeneously entering the aquifer during the passage of a storm pulse, and subsequently re‐entering the stream during baseflow conditions. Some groundwater in the alluvial floodplains had total P concentrations that mirrored the streams' total P concentrations. A detailed analysis of P forms indicated that particulate P (i.e. P attached to particulates greater than 0·45 µm) was a significant portion of the P transport. This research suggests the need for more controlled studies on stage‐dependent transient storage in alluvial systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
160.
Rapidly depleting unconfined aquifers are the primary source of water for irrigation on the North China Plain. Yet, despite its critical importance, groundwater recharge to the Plain remains an enigma. We introduce a one‐dimensional soil‐water‐balance model to estimate precipitation‐ and irrigation‐generated areal recharge from commonly available crop and soil characteristics and climate data. To limit input data needs and to simplify calculations, the model assumes that water flows vertically downward under a unit gradient; infiltration and evapotranspiration are separate, sequential processes; evapotranspiration is allocated to evaporation and transpiration as a function of leaf‐area index and is limited by soil‐moisture content; and evaporation and transpiration are distributed through the soil profile as exponential functions of soil and root depth, respectively. For calibration, model‐calculated water contents of 11 soil‐depth intervals from 0 to 200 cm were compared with measured water contents of loam soil at four sites in Luancheng County, Hebei Province, over 3 years (1998–2001). Each 50‐m2 site was identically cropped with winter wheat and summer maize, but received a different irrigation treatment. Average root mean‐squared error between measured and model‐calculated water content of the top 180 cm was 4·2 cm, or 9·3% of average total water content. In addition, model‐calculated evapotranspiration compared well with that measured by a large‐scale lysimeter. To test the model, 12 additional sites were simulated successfully. Model results demonstrate that drainage from the soil profile is not a constant fraction of precipitation and irrigation inputs, but rather the fraction increases as the inputs increase. Because this drainage recharges the underlying aquifer, improving irrigation efficiency by reducing seepage will not reverse water‐table declines. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号