首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   347篇
  免费   14篇
  国内免费   2篇
测绘学   13篇
大气科学   31篇
地球物理   135篇
地质学   95篇
海洋学   29篇
天文学   40篇
自然地理   20篇
  2022年   1篇
  2021年   6篇
  2020年   6篇
  2019年   6篇
  2018年   8篇
  2017年   11篇
  2016年   8篇
  2015年   4篇
  2014年   19篇
  2013年   17篇
  2012年   12篇
  2011年   22篇
  2010年   24篇
  2009年   30篇
  2008年   15篇
  2007年   14篇
  2006年   14篇
  2005年   21篇
  2004年   5篇
  2003年   11篇
  2002年   10篇
  2001年   7篇
  2000年   5篇
  1999年   5篇
  1998年   4篇
  1997年   6篇
  1996年   1篇
  1995年   7篇
  1994年   4篇
  1993年   8篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1983年   5篇
  1982年   5篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   3篇
  1973年   2篇
排序方式: 共有363条查询结果,搜索用时 15 毫秒
351.
In streams, benthic bacterial communities are integral to multiple aspects of ecosystem function, including carbon and nitrogen cycles. Variation both in terms of bacterial community structure (based on taxonomic and/or functional genes) and function can reveal potential drivers of spatiotemporal patterns in stream processes. In this study, the abundance and diversity of 16S rRNA genes and abundance of nosZ genes, encoding for nitrous oxide reductase, were related to denitrification and environmental conditions. Denitrification rates varied among the three streams examined, and within a given stream there were significant longitudinal differences. Likewise, bacterial community structure based on analysis of the 16S rRNA gene also differed significantly among streams. However, variation in denitrification rate was not well correlated with environmental or biological variables measured. In addition, relatively large numbers of denitrifiers occurred when denitrification rates were low. In conclusion, although the streams differed in environmental conditions as well as bacterial community structure, these differences did not explain much of the spatial variation in denitrification rates.  相似文献   
352.
This study demonstrates the feasibility of using direct N2 measurements in an estuary for determination of denitrification. High precision measurements of dinitrogen: argon ratios (N2∶Ar) were made by membrane inlet mass spectrometry on water samples taken along the length of the Chesapeake Bay in July and October 2004. The N2∶Ar ratio in low salinity surface water was elevated relative to air saturation by 0.3–0.5% with no systematic change along the length of the Bay. N2∶Ar in high salinity bottom water exhibited a linear increase in the landward direction along a 144-km longitudinal section. In this section of the Bay covering 20% of the main stem, the bottom water salinity was statistically uniform and the increase in N2∶Ar was in the direction of net residual current flow. The system was analyzed as a capped river with the assumption that N2 entered the water from the underlying sediment where denitrification is known to take place. The rate of denitrification needed to support the measured increase in N2 was calculated using an average residual current velocity and water column depth. The increase in N2 with distance (0.046μmol N l−1 km−1) equated to an average denitrification flux of 73 μmol N m−2 h−1. N2 fluxes determined on sediment cores taken from the source and terminus regions of the delineated water mass were 45±23 and 83±39 μmol N m−2 hr−1, respectively, which were not statistically different from the whole system estimate. The measured change in oxygen concentration within the bottom water was used to estimate nitrogen remineralization and the efficiency of denitrification. Denitrification efficiency (nitrogen denitrified/nitrogen remineralized) was estimated to be in the range of 22–28% for the bottom water sediment system and 30–37% considering the sediment zone alone.  相似文献   
353.
Nutrient levels in the nearshore waters of the Florida Keys have increased over the past few decades concomitant with a decline in the health of Florida's reef system. Phosphorus is a particular concern in the Florida Keys as it may be the limiting nutrient in nearshore waters. We demonstrate that the upside-down jellyfish, Cassiopea xamachana, decreases its rate of phosphate uptake following exposure to elevated levels of dissolved inorganic phosphate. We also show that this subsequent suppression of uptake rates persists for some time following exposure to elevated phosphates. Using these attributes, we experimentally investigated the use of C. xamachana as a bioindicator for dissolved inorganic phosphates in seawater. Our results show that these animals reveal comparative differences in environmental phosphates despite traditional testing methods yielding no detectable phosphates. We propose that C. xamachana is a bioindicator useful for integrating relevant information about phosphate availability in low nutrient environments.  相似文献   
354.
Stable-isotope profiles show that flat-lying marble units acted as impermeable barriers to upward fluid flow in transitional amphibolite-granulite grade rocks of the Kigluaik Mountains, Seward Peninsula, Alaska. The degree of permeability is related to the composition of the marble. The margin of a thick pure dolomite marble chemically reacted with underlying metasyenite (aH2O=0.2) to form a 2 cm boundary layer of calcite + forsterite by introduction of SiO2. No fluid penetrated past this reaction front, although the high temperature of metamorphism (800°C) allowed transport of carbon and oxygen isotopes for an additional 2 cm by diffusion through the solid dolomite. A second marble with a higher silica content underwent more decarbonation, which enhanced porosity and lead to a greater extent of isotope transport (2–3 m) in contact with quartzo-feld-spathic gneiss below. An estimate of total fluid flux across the bottom of this marble layer based on the shape of the isotope profile is 1 cm3/cm2 directed down, out of the marble. At two other marble-gneiss contacts steep isotopic gradients coincide with lithologic contacts, indicating very little cross-lithology fluid flow. The extent of diffusional transport of isotopes in the marbles is limited and interpreted as indicating the transient presence of a pore fluid, generated by thermally driven devolatilization reactions. No wholesale pervasive advection of C-O-H fluid occurred across the thick, continuous, marble units near the exposed base of the Kigluaik Group section during the entire regional metamorphic cycle. Activities of pore-fluid species were controlled by internal processes. Movement of volatiles and stable-isotopes between contrasting rock-types was dominantly diffusive. Channelized fluid pathways through the marble units developed during uplift and cooling but were not present during peak metamorphism. Heating of the section occurred by conduction, probably from an underlying magma source, and not by advection of a C-O-H fluid.  相似文献   
355.
Increasing attention is being focused on the rapid rise of CO2 levels in the atmosphere, which many believe to be the major contributing factor to global climate change. Sequestering CO2 in deep geological formations has been proposed as a long-term solution to help stabilize CO2 levels. However, before such technology can be developed and implemented, a basic understanding of H2O–CO2 systems and the chemical interactions of these fluids with the host formation must be obtained. Important issues concerning mineral stability, reaction rates, and carbonate formation are all controlled or at least significantly impacted by the kinetics of rock–water reactions in mildly acidic, CO2-saturated solutions. Basalt has recently been identified as a potentially important host formation for geological sequestration. Dissolution kinetics of the Columbia River Basalt (CRB) were measured for a range of temperatures (25–90 °C) under mildly acidic to neutral pH conditions using the single-pass flow-through test method. Under anaerobic conditions, the normalized dissolution rates for CRB decrease with increasing pH (3 ? pH ? 7) with a slope, η, of −0.15 ± 0.01. Activation energy, Ea, has been estimated at 32.0 ± 2.4 kJ mol−1. Dissolution kinetics measurements like these are essential for modeling the rate at which CO2-saturated fluids react with basalt and ultimately drive conversion rates to carbonate minerals in situ.  相似文献   
356.
This paper presents a unique set of observations of nearlycoincident and progressive oceanic and marine atmospheric boundary-layer (MABL) fronts in a coastal zone. The event was observed during the afternoon of 12 May 1996 at the United States Army Corps of Engineers, Coastal Engineering Research Center, Field Research Facility pier at Duck, North Carolina. The oceanic front was warm and fresh. Current variabilityaccompanied the oceanic front. A marked MABL front preceded the oceanic front by several minutes and had characteristics of a sea-breezefront. This MABL front separated warmer and dryer pre-frontal air from cooler and moister post-frontal air. Wind direction and wind speedvariability accompanied the MABL front. The sea-surface roughness signatures of both fronts were detected by an X-band pulsed Doppler radar. Supporting data are used to identify each front detected by the radar and to calculate each front's velocity. In an attempt to explain the sea-surface roughness variations associated with each front, the radar data are compared to corresponding variations in wind speed, wind direction, and air-sea temperature difference.  相似文献   
357.
358.
The integration of geomorphic mapping, soil stratigraphy, and radiocarbon dating of alluvial deposits offers insight to the timing, magnitude, and paleoclimatic context of Holocene fan sedimentation near Yuma, Arizona. Mapping of 3400 km2 indicates about 10% of the area aggraded in the late Holocene and formed regionally extensive alluvial fan and alluvial plain cut-and-fill terraces. Fan deposits have weakly developed gravelly soils and yielded a date of 3200–2950 cal yr BP from carbonized wood. Alluvial plain deposits have weakly developed buried sandy soils and provided a date of 2460–2300 cal yr BP from a terrestrial snail shell. Precipitation records were analyzed to form historical analogues to the late Holocene aggradation and to consider the role of climatic variability and extreme hydrologic events as drivers of the sedimentation. The historical precipitation record indicates numerous above-average events correlated to the Southern Oscillation Index (SOI) in the region, but lacks any significant reactivation of alluvial fan surfaces. The timing of aggradation from 3200 to 2300 cal yr BP correlates well with other paleoclimatic proxy records in the southwestern U.S. and eastern Pacific region, which indicate an intensification of the El Niño-Southern Oscillation (ENSO) climatic pattern and rapid climate change during this period.  相似文献   
359.
Groundwater monitoring wells are present at most hydrocarbon release sites that are being assessed for cleanup. If screened across the vadose zone, these wells provide an opportunity to collect vapor samples that can be used in the evaluation of vapor movement and biodegradation processes occurring at such sites. This paper presents a low purge volume method (modified after that developed by the U.S. EPA) for sampling vapor from monitoring wells that is easy to implement and can provide an assessment of the soil gas total petroleum hydrocarbon (TPH) and O2 concentrations at the base of the vadose zone. As a result, the small purge method allows for sampling of vapor from monitoring wells to support petroleum vapor intrusion (PVI) risk assessment. The small purge volume method was field tested at the Hal's service station site in Green River, Utah. This site is well‐known for numerous soil gas measurements containing high O2 and high TPH vapor concentrations in the same samples which is inconsistent with well‐accepted biodegradation models for the vapor pathway. Using the low purge volume method, monitoring wells were sampled over, upgradient, and downgradient of the light nonaqueous phase liquid (LNAPL) footprint. Results from our testing at Hal's show that vapor from monitoring wells over LNAPL contained very low O2 and high TPH concentrations. In contrast, vapor from monitoring wells not over LNAPL contained high O2 and low TPH concentrations. The results of this study show that a low purge volume method is consistent with biodegradation models especially for sampling at sites where low permeability soils exist in and around a LNAPL source zone.  相似文献   
360.
Depletion of Nb relative to K and La is characteristic of lavas in subduction-related magmatic arcs, as distinct from mid-ocean ridge basalts. Nb depletion is also characteristic of the continental crust. This and other geochemical similarities between the continental crust and high-Mg# andesite magmas found in arcs suggests that the continental crust may have formed by accretion of andesites. Previous studies have shown that the major element characteristics of high-Mg# andesites may be produced by melt/rock reaction in the upper mantle. In this paper, new data on partitioning of K, Nb, La and Ce between garnet, orthopyroxene and clinopyroxene in mantle xenoliths, and on partitioning of Nb and La between orthopyroxene and liquid, show that garnet and orthopyroxene have Nb crystal/liquid distribution coefficients which are much larger than those of K and La. Similar fractionations of Nb from K and La are expected in spinel and olivine. For this reason, reactions between migrating melt and large masses of mantle peridotite can produce substantial depletion of Nb in derivative liquids. Modeling shows that reaction between ascending, mantle-derived melts and mantle peridotite is a viable mechanism for producing the trace element characteristics of high-Mg# andesite magmas and the continental crust.

Alternatively, small-degree melts of metabasalt and/or metasediment in the subducting slab may leave rutile in their residue, and will thus have large Nb depletions relative to K and La [1]. Slab melts are too rich in light rare earth elements and other incompatible elements, and too poor in compatible elements, to be parental to arc magmas. However, ascending slab melts may be modified by reaction with the mantle. Our new data permit modeling of the trace element effects of reaction between small-degree melts of the slab and mantle peridotite. Modeling shows that this type of reaction is also a viable mechanism for producing the trace element characteristics of high-Mg# andesites and the continental crust. These findings, in combination with previous results, suggest that melt/rock reaction in the upper mantle has been an important process in forming the continental crust and mantle lithosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号