首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24722篇
  免费   191篇
  国内免费   917篇
测绘学   1436篇
大气科学   2024篇
地球物理   4601篇
地质学   11661篇
海洋学   1025篇
天文学   1691篇
综合类   2162篇
自然地理   1230篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   9篇
  2020年   15篇
  2019年   10篇
  2018年   4768篇
  2017年   4047篇
  2016年   2596篇
  2015年   250篇
  2014年   98篇
  2013年   68篇
  2012年   1008篇
  2011年   2749篇
  2010年   2035篇
  2009年   2330篇
  2008年   1908篇
  2007年   2370篇
  2006年   62篇
  2005年   198篇
  2004年   410篇
  2003年   412篇
  2002年   253篇
  2001年   50篇
  2000年   56篇
  1999年   15篇
  1998年   26篇
  1997年   5篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1990年   4篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1982年   1篇
  1981年   23篇
  1980年   21篇
  1978年   2篇
  1977年   2篇
  1976年   8篇
  1975年   2篇
  1962年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
921.
Hydrogeochemical and isotopic signatures of the waters of the Baro-Akobo River Basin show deviation from signatures in other Ethiopian river basins. In this study, hydrogeochemical and isotope methods were employed to determine regional and local hydrogeology and characteristics of the basin. Optical, thermal and radar remote sensing products were used to update geological and structural maps of the basin and determine sampling points using the judgment sampling method. A total of 363 samples from wells, springs, rivers, lakes, swamps and rain were collected for this study, and an additional 270 water quality data sets were added from previous studies. These data were analyzed for their hydrogeochemical characteristics and isotope signatures. Analysis of the oxygen, deuterium and tritium isotopes shows the groundwater of the basin is modern water. Among all basins in Ethiopia, the Baro-Akobo Basin shows the highest enrichment. This indicates the proximity of the rainfall sources, which presumably are the Sudd and other wetlands in South Sudan. The hydrochemical properties of the waters show evapotranspiration is the dominant hydrologic process in the basin and explains the large amount of water that is lost in the lowland plain. Analysis of radon-222 shows no significant groundwater flux over the wetlands, which are part of Machar Marshes. This shows evaporation to be dominant hydrologic process in this zone. Results from all analyses help explain the limited holding capacity of the aquifers in the recharge zone and their vulnerability to anthropogenic impacts and climate variability. There is a trend of decreasing surface flow and rainfall and increasing water soil erosion.  相似文献   
922.
Iran is a developing country with arid and semiarid regions. Poor management of water resources combined with the effects of climate change is leading to the drying of several rivers and wetlands. Several planned water development projects, primarily for agricultural expansion, will be implemented in the coming years which could worsen impacts on vulnerable aquatic ecosystems. Proper water resources management is essential to meet present and future residential, environmental, industrial, and agricultural demands in semiarid regions. This paper presents projections of how the availability of water resources will change in the Karkheh river basin of Iran for the period 2010–2059 employing sustainability criteria in the form of time-based reliability, volumetric reliability, resiliency, and vulnerability. This paper’s results show that consideration of environmental receptors as a stakeholder of water use places limitations on agricultural development within the Karkheh river basin.  相似文献   
923.
The main objective of this study is to investigate potential application of frequency ratio (FR), weights of evidence (WoE), and statistical index (SI) models for landslide susceptibility mapping in a part of Mazandaran Province, Iran. First, a landslide inventory map was constructed from various sources. The landslide inventory map was then randomly divided in a ratio of 70/30 for training and validation of the models, respectively. Second, 13 landslide conditioning factors including slope degree, slope aspect, altitude, plan curvature, stream power index, topographic wetness index, sediment transport index, topographic roughness index, lithology, distance from streams, faults, roads, and land use type were prepared, and the relationships between these factors and the landslide inventory map were extracted by using the mentioned models. Subsequently, the multi-class weighted factors were used to generate landslide susceptibility maps. Finally, the susceptibility maps were verified and compared using several methods including receiver operating characteristic curve with the areas under the curve (AUC), landslide density, and spatially agreed area analyses. The success rate curve showed that the AUC for FR, WoE, and SI models was 81.51, 79.43, and 81.27, respectively. The prediction rate curve demonstrated that the AUC achieved by the three models was 80.44, 77.94, and 79.55, respectively. Although the sensitivity analysis using the FR model revealed that the modeling process was sensitive to input factors, the accuracy results suggest that the three models used in this study can be effective approaches for landslide susceptibility mapping in Mazandaran Province, and the resultant susceptibility maps are trustworthy for hazard mitigation strategies.  相似文献   
924.
Due to deficient water resources in the Loess Plateau, watershed management plays a very important role, not only for ecological and environmental protection but also for the social development of the region. To better understand the hydrological and water resource variations in the typical watershed of the Loess Plateau and the Qinghe River Basin, the influences of land cover and climate change were analysed, and a SWAT model was built to simulate the response of the hydrological situation to land cover changes that have occurred over the past 30 years. The results demonstrated that the main land cover change occurring in the Qinghe River Basin was the conversion of land cover from grassland to woodland and farmland from the late 1980s to 2010. Woodland and farmland took 87.36 and 10.55%, respectively, from the overall area transferred over 20 years and more than 18% of the total watershed area. Hydrological simulation results indicated that land cover played a predominant role in the hydrological variation of the Qinghe River Basin, although the effects of climate change should not be discounted. The significant changes in land cover could be superimposed by policy orientation and economic requirements. Although it is hard to evaluate the land cover changes and the corresponding hydrological responses in a simple language, related analyses have demonstrated an increasing trend of runoff in the dry season, while there is a somewhat decreasing trend during the flood season in the river basin. There results could be significant and provide a positive influence on both future flood control and the conservation of water and soil.  相似文献   
925.
The present study attempts to model the spatial variability of three groundwater qualitative parameters in Guilan Province, northern Iran, using artificial neural networks (ANNs) and support vector machines (SVMs). Data collected from 140 observation wells for the years 2002–2014 were used. Five variables, X and Y coordinates of the observation well, distance of the observation well from the shoreline, areal average 6-month rainfall depth, and groundwater level at the day of water quality sampling, were considered as primary input variables. In addition, nine qualitative variables were also considered as auxiliary input variables. Electrical conductivity (EC), sodium concentration (Na+), and sulfate concentration (SO4 2?) of the groundwater in the region were estimated using ANNs and SVMs with different input combinations. The results showed that both ANNs and SVMs work well when the only primary input variable is the well location. The ANN yielded an RMSE of 1.03 mEq/l for SO4 2?, 1.05 mEq/l for Na+, and 203.17 μS/cm for EC, using the X and Y coordinates of the observation wells in the study area. In the case of SVM, these values were, respectively, 0.87, 0.87, and 176.68. Considering the auxiliary input variables (pH, EC, and the concentrations of Na+, K+, Ca2+, Mg2+, Cl?, SO4 2?, and HCO3 ?) resulted in a significant decrease in the RMSE of both ANNs (0.22, 0.30, and 33.04) and SVMs (0.26, 0.34, and 36.23). Comparing these RMSE values with those of cokriging interpolation technique (0.59, 0.98, and 177.59) indicated that ANNs and SVMs produced more accurate estimates of the three qualitative parameters. The relative importance of auxiliary input variables was also determined using Gamma test. The output uncertainty of ANNs and SVMs were determined using p-factor and d-factor. The results showed that SVMs have less uncertainty than ANNs.  相似文献   
926.
Biophysical and biochemical plant foliage parameters play a key role in assessing vegetation health. Those plant parameters determine the spectral reflectance and transmittance properties of vegetation; therefore, hyperspectral remote sensing, particularly imaging spectroscopy, can provide estimates of leaf and canopy chemical properties. Based on the relationship between spectral response and biochemical/biophysical properties of the leaves and canopies, the PROSPECT radiative transfer model simulates the interaction of light with leaves. In this study, more than 1100 leaf samples from the Amazon forest of Ecuador were collected at several study sites, some of which are affected by petroleum pollution, and across the vertical profile of the forest. For every sample, field spectroscopy at leaf level was conducted with a spectroradiometer. The goal of this study was to assess leaf optical properties of polluted and unpolluted rainforest canopies across the vertical profile and identify vegetation stress expressed in changes of biophysical and biochemical properties of vegetation. An ANOVA followed by Holme’s multiple comparisons of means and a principal component analysis showed that photosynthetic pigments, chlorophyll and carotenoids have significantly lower levels across the vertical profile of the forest, particularly in sites affected by petroleum pollution. On the other hand, foliar water content showed significantly higher levels in the polluted site. Those findings are symptoms of vegetation stress caused by reduced photosynthetic activity and consequently decreased transpiration and water-use efficiency of the plants. Cross-comparison between SPAD-502 chlorophyll content meter index and chlorophyll content showed strong positive correlation coefficients (r = 0.71 and r 2 = 0.51) which suggests that using the SPAD-502 chlorophyll index itself is sensitive enough to detect vegetation stress in a multispecies tropical forest. Therefore, the SPAD-502 can be used to assess chlorophyll content of vegetation across polluted and non-polluted sites at different canopy layers. The results presented in this paper contribute to the very limited literature on field spectroscopy and radiative transfer models applied to the vertical profile of the Amazon forest.  相似文献   
927.
According to World Meteorological Organization report in 2015, the southwest of Iran has become one of the dust sources in the region. And the objective of this research is to study the dust storms originating in this region. For this purpose, based on the weather data of 14 stations, the dust storms of the region were investigated, and the dust storm of February 7, 2015, was selected due to its very high concentration of dust particles (66 times the normal values). For the analysis of source areas and storm paths, the FNL data was used. The regional models of Navy Aerosol Analysis and Prediction System (NAAPS), Barcelona Supercomputing Centre-Dust Regional Atmospheric Model 8b (DREAM 8b), Non-hydrostatic Multiscale Model Barcelona Supercomputing Center (NMMB/BSC), and hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) were used to study and analyze the selected storm. The results showed that the dust event in February 8, 2016, has been the result of the polar front jet stream (PJF) caused by western immigrant system that had been over the Sahara in Africa, the deserts of Iraq, Syria, Saudi Arabia, and finally southwest of Iran in making the extreme dust event. According to the Moderate Resolution Imaging Spectroradiometer data and point models of NAAPS, optical depth was very high. The DREAM 8b and NMMB/BSC models confirmed the impact of the local factors and closeness to the dust source regions. The backward tracking of the model with the HYSPLIT model showed three tracks transporting the dust particles to the region. This software also showed that the dust particles occupied an atmospheric tunnel of 1.5 km in diameter.  相似文献   
928.
Nonlinear electron-acoustic solitary waves (EASWs) are studied using Sagdeev’s pseudo-potential technique in a collisionless unmagnetized plasma consisting of a cold electron fluid, nonthermal hot electrons and stationary ions. It is shown that the presence of fast nonthermal electrons may modify the parametric region where electron-acoustic solitons may exist. Our investigation is of wide relevance to astronomers and space scientists working on interstellar space plasmas.  相似文献   
929.
An integrated marsh management (IMM) project in an urbanized watershed on Long Island, New York, USA, aimed to mitigate salt marsh degradation and to reduce mosquito production by an innovative combination of restoration and open marsh water management methods. The grid ditch network at two treatment marshes was replaced with naturalized tidal channels and ponds. Effects of the hydrologic alterations were monitored utilizing a before–after–control–impact approach. The treatment marshes experienced a number of beneficial outcomes including a fourfold reduction in the invasive Phragmites australis and increased native vegetation cover in the most degraded portions of the marsh, increased abundance and diversity of marsh killifish and estuarine nekton species, higher shorebird and waterfowl densities, and increased avian species diversity. The successful implementation of IMM concept led to improved marsh health and diminished mosquito production. Therefore, this study may serve as a template for similar large-scale integrated salt marsh restoration projects.  相似文献   
930.
The headrace tunnels at the Jinping II Hydropower Station cross the Jinping Mountain with a maximum overburden depth of 2,525 m, where 80% of the strata along the tunnels consist of marble. A number of extremely intense rockbursts occurred during the excavation of the auxiliary tunnels and the drainage tunnel. In particular, a tunnel boring machine (TBM) was destroyed by an extremely intense rockburst in a 7.2-m-diameter drainage tunnel. Two of the four subsequent 12.4-m-diameter headrace tunnels will be excavated with larger size TBMs, where a high risk of extremely intense rockbursts exists. Herein, a top pilot tunnel preconditioning method is proposed to minimize this risk, in which a drilling and blasting method is first recommended for the top pilot tunnel excavation and support, and then the TBM excavation of the main tunnel is conducted. In order to evaluate the mechanical effectiveness of this method, numerical simulation analyses using the failure approaching index, energy release rate, and excess shear stress indices are carried out. Its construction feasibility is discussed as well. Moreover, a microseismic monitoring technique is used in the experimental tunnel section for the real-time monitoring of the microseismic activities of the rock mass in TBM excavation and for assessing the effect of the top pilot tunnel excavation in reducing the risk of rockbursts. This method is applied to two tunnel sections prone to extremely intense rockbursts and leads to a reduction in the risk of rockbursts in TBM excavation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号