首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2695篇
  免费   101篇
  国内免费   31篇
测绘学   45篇
大气科学   214篇
地球物理   657篇
地质学   1035篇
海洋学   230篇
天文学   410篇
综合类   4篇
自然地理   232篇
  2022年   8篇
  2021年   38篇
  2020年   42篇
  2019年   60篇
  2018年   82篇
  2017年   46篇
  2016年   76篇
  2015年   63篇
  2014年   68篇
  2013年   140篇
  2012年   95篇
  2011年   112篇
  2010年   98篇
  2009年   127篇
  2008年   119篇
  2007年   115篇
  2006年   115篇
  2005年   99篇
  2004年   111篇
  2003年   102篇
  2002年   96篇
  2001年   58篇
  2000年   65篇
  1999年   46篇
  1998年   50篇
  1997年   35篇
  1996年   34篇
  1995年   28篇
  1994年   32篇
  1993年   35篇
  1992年   35篇
  1991年   21篇
  1990年   32篇
  1989年   34篇
  1988年   29篇
  1987年   35篇
  1986年   34篇
  1985年   33篇
  1984年   41篇
  1983年   44篇
  1982年   40篇
  1981年   31篇
  1980年   43篇
  1979年   32篇
  1978年   21篇
  1977年   29篇
  1976年   17篇
  1975年   16篇
  1974年   15篇
  1973年   18篇
排序方式: 共有2827条查询结果,搜索用时 424 毫秒
481.
Contamination of the Paleozoic carbonate aquifer at Walkerton (Ontario, Canada) by pathogenic bacteria following heavy rain in May 2000 resulted in 2,300 illnesses and seven deaths. Subsequent tracer testing showed that there was rapid groundwater flow in the aquifer, and also rapid exchange between the aquifer and the ground surface. Electrical conductivity (EC) profiling during a 3-day pumping test showed that most flow was through bedding-plane fractures spaced about 10 m apart, that there were substantial contrasts in EC in the major fracture flows, and that there were rapid changes over time. Total coliform sampling revealed transient groundwater contamination, particularly after heavy rain and lasting up to a few days. These characteristics can be understood in terms of the dual-porosity nature of the aquifer. Most of the storage is in the matrix, but this can be considered to be static in the short term. Almost all transport is through the fracture network, which has rapid groundwater flow (~100 m/day) and rapid transmission of pressure pulses due to the high hydraulic diffusivity. Rapid recharge can occur through thin and/or fractured overburden and at spring sites where flow is reversed by pumping during episodes of surface flooding. These characteristics facilitated the ingress of surface-derived bacteria into the aquifer, and their rapid transport within the aquifer to pumping wells. Bacterial presence is common in carbonate aquifers, and this can be explained by the well-connected, large-aperture fracture networks in these dual-porosity aquifers, even though many, such as at Walkerton, lack karst landforms.  相似文献   
482.
483.
To further develop prediction of the range of morphological adjustments associated with sediment pulses in bar‐pool channels, we analyze channel bed topographic data collected prior to and following the removal of two dams in Oregon: Marmot Dam on the Sandy River and Brownsville Dam on the Calapooia River. We hypothesize that, in gravel‐bed, bar‐pool channels, the response of bed relief to sand and gravel sediment pulses is a function of initial relief and pulse magnitude. Modest increases in sediment supply to initially low‐relief, sediment‐poor cross‐sections will increase bed relief and variance of bed relief via bar deposition. Modest increases in sediment supply to initially high‐relief cross‐sections, characteristic of alternate bar morphology, will result in decreased bed relief and variance of relief via deposition in bar‐adjacent pools. These hypothesized adjustments are measured in terms of bed relief, which we define as the difference in elevation between the pool‐bottom and bar‐top. We evaluate how relief varies with sediment thickness, where both relief and mean sediment thickness at a cross‐section are normalized by the 90th percentile of observed relief values within a reach prior to a sediment pulse. Field measurements generally supported the stated hypotheses, demonstrating how introduction of a sediment pulse to low‐relief reaches can increase mean and variance of relief, while introduction to high‐relief reaches can decrease the mean and variance of bed relief, at least temporarily. In general, at both sites, the degree of impact increased with the thickness of sediment delivered to the cross‐section. Results thus suggest that the analysis is a useful step for understanding the morphological effects of sediment pulses introduced to gravel‐bed, bar‐pool channels. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
484.
Glaciers are major agents of erosion that increase sediment load to the downstream fluvial system. The Castle Creek Glacier, British Columbia, Canada, has retreated ~1.0 km in the past 70 years. Suspended sediment concentration (SSC) and streamflow (Q) were monitored independently at five sites within its pro‐glacial zone over a 60 day period from July to September 2011, representing part of the ablation season. Meteorological data were collected from two automatic weather stations proximal to the glacier. The time‐series were divided into hydrologic days and the shape and magnitude of the SSC response to hydro‐meteorological conditions (‘cold and wet’, ‘hot and dry’, ‘warm and damp’, and ‘storm’) were categorized using principal component analysis (PCA) and cluster analysis (CA). Suspended sediment load (SSL) was computed and summarized for the categories. The distribution of monitoring sites and results of the multivariate statistical analyses describe the temporal and spatial variability of suspended sediment flux and the relative importance of glacial and para‐glacial sediment sources in the pro‐glacial zone. During the 2011 study period, ~ 60% of the total SSL was derived from the glacial stream and sediment deposits proximal to the terminus of the glacier; during ‘storm’ events, that contribution dropped to ~40% as the contribution from diffuse and point sources of sediment throughout the pro‐glacial zone and within the meltwater channels increased. While ‘storm’ events accounted for just 3% of the study period, SSL was ~600% higher than the average over the monitoring period, and ~20% of the total SSL was generated in that time. Determining how hydro‐meteorological conditions and sediment sources control sediment fluxes will assist attempts to predict how pro‐glacial zones respond to future climate changes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
485.
Flow within the interfacial layer of gravel‐bed rivers is poorly understood, but this zone is important because the hydraulics here transport sediment, generate flow structures and interact with benthic organisms. We hypothesized that different gravel‐bed microtopographies generate measurable differences in hydraulic characteristics within the interfacial layer. This was tested using a high density of spatially and vertically distributed, velocity time series measured in the interfacial layers above three surfaces of contrasting microtopography. These surfaces had natural water‐worked textures, captured in the field using a casting procedure. Analysis was repeated for three discharges, with Reynolds numbers between 165000 and 287000, to evaluate whether discharge affected the impact of microtopography on interfacial flows. Relative submergence varied over a small range (3.5 to 8.1) characteristic of upland gravel‐bed rivers. Between‐surface differences in the median and variance of several time‐averaged and turbulent flow parameters were tested using non‐parametric statistics. Across all discharges, microtopographic differences did not affect spatially averaged (median) values of streamwise velocity, but were associated with significant differences in its spatial variance, and did affect spatially averaged (median) turbulent kinetic energy. Sweep and ejection events dominated the interfacial region above all surfaces at all flows, but there was a microtopographic effect, with Q2 and Q4 events less dominant and structures less persistent above the surface with the widest relief distribution, especially at the highest Reynolds number flow. Results are broadly consistent with earlier work, although this analysis is unique because of the focus on interfacial hydraulics, spatially averaged ‘patch scale’ metrics and a statistical approach to data analysis. An important implication is that observable differences in microtopography do not necessarily produce differences in interfacial hydraulics. An important observation is that appropriate roughness parameterizations for gravel‐bed rivers remain elusive, partly because the relative contributions to flow resistance of different aspects of bed microtopography are poorly constrained. © 2014 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   
486.
Temporal patterns in specific runoff, dissolved organic carbon concentrations [DOC] and fluxes were examined during two periods: 1994–1997 (period 1) and 2007–2009 (period 2) in five adjacent tributary catchments of Lake Simcoe, the largest lake in southern Ontario, Canada. The catchments displayed similar patterns of land use change with increases in urbanization (5–16%) and forest cover (0.2–4%) and declines in agriculture (4–8%) between 1994 and 2008. Climate in the catchments was similar; temperature increased slightly, but no significant change in precipitation was observed. Despite similar pattern of climate and land use, runoff responses and tributary [DOC] were different across the catchments. Following a very dry year (i.e. 1999), runoff increased steadily until the end of record. We observed increased variability in tributary [DOC] and higher DOC exports in period 2. This led to ~10% increase in [DOC] and a 13% increase in flux between the two study periods. Between the two periods, [DOC] increased by 15% in spring and 25% in summer, whereas flux increased by 17% in spring and 48% in summer. [DOC] was consistently higher in the growing (summer + autumn) than the dormant (winter + spring, minus spring melt months) seasons, but no unique pattern or simple linear flow/concentrations relationships existed. This suggests complex spatial and temporal pattern to runoff controls on DOC and flow dynamics in adjacent catchments. We therefore caution against extrapolating from monitored to unmonitored catchments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
487.
Stochastic finite-fault modeling is an important tool for simulating moderate to large earthquakes. It has proven to be useful in applications that require a reliable estimation of ground motions, mostly in the spectral frequency range of 1 to 10 Hz, which is the range of most interest to engineers. However, since there can be little resemblance between the low-frequency spectra of large and small earthquakes, this portion can be difficult to simulate using stochastic finite-fault techniques. This paper introduces two different methods to scale low-frequency spectra for stochastic finite-fault modeling. One method multiplies the subfault source spectrum by an empirical function. This function has three parameters to scale the low-frequency spectra: the level of scaling and the start and end frequencies of the taper. This empirical function adjusts the earthquake spectra only between the desired frequencies, conserving seismic moment in the simulated spectra. The other method is an empirical low-frequency coefficient that is added to the subfault corner frequency. This new parameter changes the ratio between high and low frequencies. For each simulation, the entire earthquake spectra is adjusted, which may result in the seismic moment not being conserved for a simulated earthquake. These low-frequency scaling methods were used to reproduce recorded earthquake spectra from several earthquakes recorded in the Pacific Earthquake Engineering Research Center (PEER) Next Generation Attenuation Models (NGA) database. There were two methods of determining the stochastic parameters of best fit for each earthquake: a general residual analysis and an earthquake-specific residual analysis. Both methods resulted in comparable values for stress drop and the low-frequency scaling parameters; however, the earthquake-specific residual analysis obtained a more accurate distribution of the averaged residuals.  相似文献   
488.
Sedimentary basins in general, and deep saline aquifers in particular, are being investigated as possible repositories for large volumes of anthropogenic CO2 that must be sequestered to mitigate global warming and related climate changes. To investigate the potential for the long-term storage of CO2 in such aquifers, 1600 t of CO2 were injected at 1500 m depth into a 24-m-thick “C” sandstone unit of the Frio Formation, a regional aquifer in the US Gulf Coast. Fluid samples obtained before CO2 injection from the injection well and an observation well 30 m updip showed a Na–Ca–Cl type brine with ∼93,000 mg/L TDS at saturation with CH4 at reservoir conditions; gas analyses showed that CH4 comprised ∼95% of dissolved gas, but CO2 was low at 0.3%. Following CO2 breakthrough, 51 h after injection, samples showed sharp drops in pH (6.5–5.7), pronounced increases in alkalinity (100–3000 mg/L as HCO3) and in Fe (30–1100 mg/L), a slug of very high DOC values, and significant shifts in the isotopic compositions of H2O, DIC, and CH4. These data, coupled with geochemical modeling, indicate corrosion of pipe and well casing as well as rapid dissolution of minerals, especially calcite and iron oxyhydroxides, both caused by lowered pH (initially ∼3.0 at subsurface conditions) of the brine in contact with supercritical CO2.  相似文献   
489.
Formation waters of the 14 km thick late Cretaceous–Cenozoic Beaufort–Mackenzie basin were examined as part of a larger project to better understand the petroleum potential of the region, where early exploration defined petroleum reserves of 744 × 109 bbls recoverable crude oil and 11.74 tcf gas. Historical water analyses (2583 samples from 250 wells drilled up to 5 km depth) were compiled and culled to remove incomplete and poor quality samples. The resultant database shows a broad range of salinity and water chemistry that has no systematic relationship with depth. Three main water types are defined, paleo seawater, and freshwaters related to a Miocene age gravity-driven flow system, and low TDS–high alkalinity waters. High alkalinity waters are isolated in overpressured fault blocks that were rapidly buried by post-Miocene Iperk shale deposition. The high alkalinities (up to 9000 mg/L) are interpreted to be related to in situ CO2 generation through anaerobic methanogenesis in response to freshwater invasion. The dominant control on biogenic gas generation appears to be maximum burial temperature rather than the modern temperature distribution. This is consistent with the paleopasteurization model that suggests once critical burial temperatures are reached, sterilized rocks are inhibited from further biodegradation, even when temperatures subsequently drop back into the habitable zone.  相似文献   
490.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号