首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
测绘学   5篇
大气科学   1篇
地球物理   9篇
地质学   9篇
海洋学   1篇
自然地理   1篇
  2021年   2篇
  2020年   1篇
  2016年   2篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  1965年   1篇
排序方式: 共有26条查询结果,搜索用时 265 毫秒
11.
The spatial and temporal distributions of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) was studied in the East-Frisian Wadden Sea (Southern North Sea) during several cruises between 2002 and 2005. The spatial distribution of CDOM in the German Bight shows a strong gradient towards the coast. Tidal and seasonal variations of dissolved organic matter (DOM) identify freshwater discharge via flood-gates at the coastline and pore water efflux from tidal flat sediments as the most important CDOM sources within the backbarrier area of the Island of Spiekeroog. However, the amount and pattern of CDOM and DOC is strongly affected by various parameters, e.g. changes in the amount of terrestrial run-off, precipitation, evaporation, biological activity and photooxidation. A decoupling of CDOM and DOC, especially during periods of pronounced biological activity (algae blooms and microbial activity), is observed in spring and especially in summer. Mixing of the endmembers freshwater, pore water, and open sea water results in the formation of a coastal transition zone. Whilst an almost conservative behaviour during mixing is observed in winter, summer data point towards non-conservative mixing.  相似文献   
12.
Effects of azimuthal multipath asymmetry on long GPS coordinate time series   总被引:1,自引:0,他引:1  
Carrier phase multipath is currently one source of unmodeled signals that may bias GPS coordinate time series significantly. We investigate the effect of simulated carrier phase multipath on time series of several sites covering the period 2002.0–2008.0 and spanning a range of observation geometries. High-, mid-, and low-latitude IGS sites are investigated as well as sites with significant signal obstructions. We examine the effect of multipath in different sectors of the sky, considering time-constant, horizontal reflectors at each of 0.1, 0.2, and 1.5 m below the antenna. The differences between a horizontally uniform multipath source are analyzed, and it is shown that positioning errors are generally larger when unmodeled carrier phase multipath is azimuthally heterogeneous. Using the adopted multipath model, height biases reach ±1 mm in case of the symmetric multipath and ±5 mm for the asymmetric multipath but this increases to being ±10 mm in the worst case. In addition to mean bias, low-frequency variations in the bias also exist, including periodic signals and leading to velocity biases of up to ±0.1 mm/year in the symmetric case and ±1 mm/year in the asymmetric case over the considered period. In contrast to the generally slowly varying observation geometry that is typically experienced, we show the effects of an abrupt change in geometry due to receiver/antenna hardware changes; in the case considered, we see changed pattern of temporal variation in the bias in addition to an instantaneous offset.  相似文献   
13.
Impacts of subsurface heat storage on aquifer hydrogeochemistry   总被引:3,自引:3,他引:0  
The use of shallow aquifers for subsurface heat storage in terms of energy management and building climatisation can lead to a temperature rise in the aquifer to 70 °C and above. The influence of temperature changes on individual mineral and sorption equilibria, reaction kinetics and microbial activity is largely known. However, the impact of heating to temperatures as high as 70 °C on the aquifer overall system has not been quantified yet. Temperature-related changes in sediment ion exchange behaviour, dimension and rates of mineral dissolution and precipitation as well as microbially enhanced redox processes were studied in column experiments using aquifer sediment and tap water at 10, 25, 40, and 70 °C. At 70 °C, a change in sediment sorption behaviour for cations and organic acids was postulated based on temporal changes in pH, magnesium, and potassium concentration in the experimental solution. No clear changes of pH, TIC and major cations were found at 10–40 °C. Redox zoning shifted from oxic conditions towards nitrate and iron(III) reducing conditions at 25 and 40 °C and sulphate reducing conditions at 70 °C. This was attributed to (a) a temperature-related increase in microbial reduction activity, and (b) three times higher release of organic carbon from the sediment at 70 °C compared to the lower temperatures. The findings of this study predict that a temperature increase in the subsurface up to 25 °C and above can impair the usability of ground water as drinking and process water, by reducing metal oxides and thus possibly releasing heavy metals from the sediment. Generally, at 70 °C, where clear cation and organic carbon desorption processes were observed and sulphate reducing conditions could be achieved, a site-specific assessment of temperature effects is required, especially for long-term operations of subsurface heat storage facilities.  相似文献   
14.
Flood generation in mountainous headwater catchments is governed by rainfall intensities, by the spatial distribution of rainfall and by the state of the catchment prior to the rainfall, e.g. by the spatial pattern of the soil moisture, groundwater conditions and possibly snow. The work presented here explores the limits and potentials of measuring soil moisture with different methods and in different scales and their potential use for flood simulation. These measurements were obtained in 2007 and 2008 within a comprehensive multi-scale experiment in the Weisseritz headwater catchment in the Ore-Mountains, Germany. The following technologies have been applied jointly thermogravimetric method, frequency domain reflectometry (FDR) sensors, spatial time domain reflectometry (STDR) cluster, ground-penetrating radar (GPR), airborne polarimetric synthetic aperture radar (polarimetric SAR) and advanced synthetic aperture radar (ASAR) based on the satellite Envisat. We present exemplary soil measurement results, with spatial scales ranging from point scale, via hillslope and field scale, to the catchment scale. Only the spatial TDR cluster was able to record continuous data. The other methods are limited to the date of over-flights (airplane and satellite) or measurement campaigns on the ground. For possible use in flood simulation, the observation of soil moisture at multiple scales has to be combined with suitable hydrological modelling, using the hydrological model WaSiM-ETH. Therefore, several simulation experiments have been conducted in order to test both the usability of the recorded soil moisture data and the suitability of a distributed hydrological model to make use of this information. The measurement results show that airborne-based and satellite-based systems in particular provide information on the near-surface spatial distribution. However, there are still a variety of limitations, such as the need for parallel ground measurements (Envisat ASAR), uncertainties in polarimetric decomposition techniques (polarimetric SAR), very limited information from remote sensing methods about vegetated surfaces and the non-availability of continuous measurements. The model experiments showed the importance of soil moisture as an initial condition for physically based flood modelling. However, the observed moisture data reflect the surface or near-surface soil moisture only. Hence, only saturated overland flow might be related to these data. Other flood generation processes influenced by catchment wetness in the subsurface such as subsurface storm flow or quick groundwater drainage cannot be assessed by these data. One has to acknowledge that, in spite of innovative measuring techniques on all spatial scales, soil moisture data for entire vegetated catchments are still today not operationally available. Therefore, observations of soil moisture should primarily be used to improve the quality of continuous, distributed hydrological catchment models that simulate the spatial distribution of moisture internally. Thus, when and where soil moisture data are available, they should be compared with their simulated equivalents in order to improve the parameter estimates and possibly the structure of the hydrological model.  相似文献   
15.
16.
Modern space geodetic techniques enable deformation monitoring of continental plate interiors with high spatial and temporal coverage. Resolving data and results are currently evaluated for their application for the integrated assessment of seismic hazard and risk in Germany. This goes especially for regions where earthquakes are generally rare but high magnitudes are still not unrealistic while vulnerability of today’s society is steadily growing. The present contribution deals with the continuous monitoring of tectonic fracture systems in Germany using the GPS. The estimation of the station velocities with GPS and the resulting geodetic strain is supposed to provide additional input to the earthquake hazard assessment. Unfortunately, the low expected and currently seen velocities (<1–2 mm/year) make it extremely difficult to distinguish between noise and a tectonic signal. Because of the short observation interval the velocity uncertainties are about 2 mm/year in the horizontal components. The essential goal of this program is to provide and model highly precise deformation data and to discuss its needs for a better assessment of geological hazard, especially for the most active tectonic regions in Germany, the Rhine-Graben, the Swabian Alb, the Alpine foreland, and the Vogtland. Here we present preliminary results from 2 years of measurements at currently 150 GPS stations throughout Germany. The time span of this program has proven to be too short and the density of the station network to be not dense enough yet for reliable significant horizontal station velocities and supporting the earthquake hazard assessment.  相似文献   
17.
18.
The effectiveness of different remediation procedures for decreasing the amount of TPH (total petroleum hydrocarbons) in contaminated groundwater was evaluated at the site of a former refinery. The investigations were carried out on samples taken from several gravel based HSSF (horizontal subsurface flow) constructed wetlands (CW) which differed in relation to their filter material additives (no additive, charcoal, and ferric oxides additives) and examined the potential effect of these additives on the overall treatment efficiency. Samples of the following gravel based HSSF CW were investigated. No filter additive (system A), 0.1% activated carbon (system B), 0.5% iron(III) hydroxide (system C), and the reference (system D). Systems A–C were planted with common reed (Phragmites australis), whereas system D remained unplanted. In addition, the influence of seasonal conditions on the reduction of these hydrocarbons and the correlation between the amounts of TPH and BTEX (benzene, toluene, ethylbenzene, and xylene isomers), on the one hand, and methyl tert‐butyl ether, on the other, was investigated. The study was carried out by using a modified GC‐FID approach and multivariate methods. The investigations carried out in the first year of operation demonstrated that the effectiveness of the petroleum hydrocarbon removal was highest and reached a level of 93 ± 3.5% when HSSF filters with activated carbon as a filter additive were used. This remediation method allowed the petroleum hydrocarbon content to be reduced independently of seasonal conditions. The correlation between the reduction of TPH and BTEX was found to be R = 0.8824. Using this correlation coefficient, the time‐consuming determination of the BTEX content was no longer necessary.  相似文献   
19.
Active contours, or snakes, are broadly used to detect linear features such as edges. However, they are often restricted in the delineation of regions of interest within the hyperspectral domain. In this paper, a new approach is presented, referred to as “Busyness Multiple Correlation Edge Detector”, that enables hyperspectral boundary detection using active contours such as “Alternating Vector Field Convolution” snakes. The combination of “Alternating Vector Field Convolution” snakes with the “Busyness Multiple Correlation Edge Detector” opens a broad set of applications by concurrent high convergence quality and speed. Furthermore, specific snake initialisations are tested. A series of examples are used to both demonstrate the approach and underline the benefits of the new methods.  相似文献   
20.
Aquifer thermal energy storage in urban and industrial areas can lead to an increase in subsurface temperature to 70 °C and more. Besides its impacts on mineral and sorption equilibria and chemical reaction kinetics in an aquifer, temperature sensitively influences microbial activity and thus redox processes, such as sulphate reduction. Microorganism species can only operate within limited temperature ranges and their adaptability to temperature is a crucial point for the assessment of the environmental consequences of subsurface heat storage. Column experiments with aquifer sediment and tap water at 10, 25, 40, and 70 °C showed that under the constant addition of acetate sulphate reduction could be initiated after 26–63 pore volumes exchanged at all temperatures. Fastest initiation of sulphate reduction with the highest reduction rates was found at 40 °C. Maximum rate constants during experimental run-time were 0.56 h?1 at 40 °C and 0.33, 0.36, and 0.25 h?1 at 10 and, 25, and 70 °C, respectively. Hence, microbial activity was enhanced by a temperature increase to 40 °C but was significantly lowered at 70 °C. At 25 °C methane was found in solution, indicating the presence of fermenting organisms; at 10, 40, and 70 °C no methane production was observed. It could be shown that redox processes in an aquifer generally can adapt to temperatures significantly higher than in situ temperature and that the efficiency of the reduction process can be enhanced by temperature increase to a certain limit. Enhancement of sulphate reduction in an aquifer due to temperature increase could also allow enhanced degradation of organic ground water contaminants such as BTEX, where sulphate is an important electron acceptor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号