首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   23篇
  国内免费   1篇
测绘学   11篇
大气科学   13篇
地球物理   97篇
地质学   98篇
海洋学   27篇
天文学   70篇
自然地理   42篇
  2024年   1篇
  2022年   3篇
  2021年   7篇
  2020年   12篇
  2019年   10篇
  2018年   21篇
  2017年   14篇
  2016年   18篇
  2015年   11篇
  2014年   8篇
  2013年   19篇
  2012年   16篇
  2011年   29篇
  2010年   15篇
  2009年   23篇
  2008年   17篇
  2007年   13篇
  2006年   10篇
  2005年   8篇
  2004年   11篇
  2003年   9篇
  2002年   13篇
  2001年   9篇
  2000年   11篇
  1999年   1篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1977年   2篇
  1975年   4篇
  1974年   4篇
  1973年   2篇
  1972年   2篇
排序方式: 共有358条查询结果,搜索用时 15 毫秒
31.
Benthic microalgae are key contributors to near-shore food webs and sediment stabilization. Temporal variability in microalgal biomass and production throughout the tidal cycle has been well documented; however, due to limitations of traditional methods of analysis patterns of community composition and diversity over such time scales have not been revealed. To explore the latter and better understand how short-term changes throughout the tidal cycle may affect community functioning, we compared benthic diatom composition and diversity over tidal stage shifts. We employed two disparate molecular techniques (denaturing gel gradient electrophoresis with Sanger DNA sequencing of excised bands and high-throughput community metagenome sequencing) to characterize diatom assemblages in representative muddy and sandy intertidal sites in Charleston Harbor, SC, USA. In support of prior studies, we found higher diatom diversity in sandbar as compared to mudflat sediments. Spatial differences were stronger relative to tidal temporal differences, although diversity metrics generally were highest after prolonged tidal immersion as compared to low-tide emersion or just after immersion at flood tide. Composition of the diatom assemblage differed markedly between sites, with species in genera Halamphora, Amphora, and Navicula dominating the sandbar, whereas Cyclotella, Skeletonema, and Thalassiosira were the most prevalent genera on the mudflat. Diatom composition differed by tidal stage, with assemblages during low-tide exposure distinct from samples taken after immersion. Both sandbar and mudflat sediments exhibited increases in relative proportion of epipelic diatoms and decreases in planktonic taxa during low-tide exposure. Our findings of short-term changes in species composition and dominance could inform primary productivity models to better estimate understudied diatom contributions in heterogeneous and highly variable tidal systems.  相似文献   
32.
There is a need for research that advances understanding of flow alterations in contemporary watersheds where natural and anthropogenic interactions can confound mitigation efforts. Event-based flow frequency, timing, magnitude, and rate of change were quantified at five-site nested gauging sites in a representative mixed-land-use watershed of the central USA. Statistically independent storms were paired by site (n = 111 × 5 sites) to test for significant differences in event-based rainfall and flow response variables (n = 17) between gauging sites. Increased frequency of small peak flow events (i.e., 64 more events less than 4.0 m3 s?1) was observed at the rural–urban interface of the watershed. Differences in flow response were apparent during drier periods when small rainfall events resulted in increased flow response at urban sites in the lower reaches. Relationships between rainfall and peak flow were stronger with decreased pasture/crop land use and increased urban land use by approximately 20%. Event-based total rainfall explained 40–68% of the variance in peak flow (p < 0.001). Coefficients of determination (r2) were negatively correlated with pasture/crop land use (r2 = 0.92; p = 0.007; n = 5) and positively correlated with urban land use (r2 = 0.90; p = 0.008; n = 5). Significant differences in flow metrics were observed between rural and urban sites (p < 0.05; n = 111) that were not explained by differences in rainfall variables and drainage area. An urban influence on flow timing was observed using median time lag to peak centroid and time of maximum precipitation to peak flow. Results highlight the need to establish manageable flow targets in rapidly urbanizing mixed-land-use watersheds.  相似文献   
33.
Mid-shelf sediments off the Oregon coast are characterized as fine sands that trap and remineralize phytodetritus leading to the consumption of significant quantities of dissolved oxygen. Sediment oxygen consumption (SOC) can be delayed from seasonal organic matter inputs because of a transient buildup of reduced constituents during periods of quiescent physical processes. Between 2009 and 2013, benthic oxygen exchange rates were measured using the noninvasive eddy covariance (EC) method five separate times at a single 80-m station. Ancillary measurements included in situ microprofiles of oxygen at the sediment–water interface, and concentration profiles of pore water nutrients and trace metals, and solid-phase organic C and sulfide minerals from cores. Sediment cores were also incubated to derive anaerobic respiration rates. The EC measurements were made during spring, summer, and fall conditions, and they produced average benthic oxygen flux estimates that varied between ?2 and ?15 mmol m?2 d?1. The EC oxygen fluxes were most highly correlated with bottom-sensed, significant wave heights (H s). The relationship with H s was used with an annual record of deepwater swell heights to predict an integrated oxygen consumption rate for the mid-shelf of 1.5 mol m?2 for the upwelling season (May–September) and 6.8 mol m?2 y?1. The annual prediction requires that SOC rates are enhanced in the winter because of sand filtering and pore water advection under large waves, and it counters budgets that assume a dominance of organic matter export from the shelf. Refined budgets will require winter flux measurements and observations from cross-shelf transects over multiple years.  相似文献   
34.
One-hundred fluid inclusions in Silurian marine halite were analyzed in order to determine the major-ion composition of Silurian seawater. The samples analyzed were from three formations in the Late Silurian Michigan Basin, the A-1, A-2, and B Evaporites of the Salina Group, and one formation in the Early Silurian Canning Basin (Australia), the Mallowa Salt of the Carribuddy Group. The results indicate that the major-ion composition of Silurian seawater was not the same as present-day seawater. The Silurian ocean had lower concentrations of Mg2+, Na+, and SO42−, and much higher concentrations of Ca2+ relative to the ocean’s present-day composition. Furthermore, Silurian seawater had Ca2+ in excess of SO42−. Evaporation of Silurian seawater of the composition determined in this study produces KCl-type potash minerals that lack the MgSO4-type late stage salts formed during the evaporation of present-day seawater. The relatively low Na+ concentrations in Silurian seawater support the hypothesis that oscillations in the major-ion composition of the oceans are primarily controlled by changes in the flux of mid-ocean ridge brine and riverine inputs and not global or basin-scale, seawater-driven dolomitization. The Mg2+/Ca2+ ratio of Silurian seawater was ∼1.4, and the K+/Ca2+ ratio was ∼0.3, both of which differ from the present-day counterparts of 5 and 1, respectively. Seawaters with Mg2+/Ca2+ <2 facilitate the precipitation of low-magnesian calcite (mol % Mg < 4) marine ooids and submarine carbonate cements whereas seawaters with Mg2+/Ca2+ >2 (e.g., modern seawater) facilitate the precipitation of aragonite and high-magnesian calcite. Therefore, the early Paleozoic calcite seas were likely due to the low Mg2+/Ca2+ ratio of seawater, not the pCO2 of the Silurian atmosphere.  相似文献   
35.
36.
Most, if not all forests in the Caribbean are subject to occasional disturbances from hurricanes. If current general circulation model (GCM) predictions are correct, with doubled atmospheric CO2 (2 × CO2), the tropical Atlantic will be between 1 °C and 4 °C warmer than it is today. With such a warming, more than twice as many hurricanes per year could be expected in the Caribbean. Furthermore, Emanuael (1987) indicates that in a warmed world the destructive potential of Atlantic hurricanes could be increased by 40% to 60%. While speculative, these increases would dramatically change the disturbance regimes affecting tropical forests in the region and might alter forest structure and composition. Global warming impacts through increased hurricane damage on Caribbean forests are presented.An individual tree, gap dynamics forest ecosystem model was used to simulate the range of possible hurricane disturbance regimes which could affect the Luquillo Experimental Forest in Puerto Rico. Model storm frequency ranged from no storms at all up to one storm per year; model storm intensity varied from no damage up to 100% mortality of trees. The model does not consider the effects of changing temperature and rainfall patterns on the forest. Simulation results indicate that with the different hurricane regimes a range of forest types are possible, ranging from mature forest with large trees, to an area in which forest trees are never allowed to reach maturity.  相似文献   
37.
McKenna SA  Wahi A 《Ground water》2006,44(5):723-731
Three measurements of head at unique locations form a three-point estimator of the local magnitude and orientation of the hydraulic gradient. The relative head measurement error (RHME) is defined here as the measurement error normalized by the head drop across the three-point estimator. Monte Carlo simulation results show that estimators with base to height ratios between 0.5 and 5.0 and that are large enough to keep the RHME below 0.05 create the most accurate gradient estimates and provide criteria for identifying good estimators. These criteria are applied to an example ground water monitoring network design problem in the Culebra dolomite near the Waste Isolation Pilot Plant repository to both analyze temporal changes and modify and expand the current monitoring network. Limiting the three-point estimators to those that meet the shape and RHME criteria reduces the number of possible estimators by >50% and leads to approximately 1 order of magnitude decrease in the average estimated magnitude of the gradient relative to using all estimators. Application of these criteria also reduces the variability in estimated gradient magnitude and orientation between the two time periods of measurements. Redundant wells in the network are identified by removing each existing well in turn and determining which removals yield the smallest decrease in the number of acceptable estimators. Optimal new well locations are identified by mapping the increase in total number of acceptable estimators for a single new well placed in the study domain.  相似文献   
38.
The Reduced Emissions from Deforestation and forest Degradation (REDD+) mechanism of a future post-2012 global climate-change treaty would aim to give incentive to tropical countries to reduce deforestation and thus forest-carbon emissions. It would do so by crediting tropical countries for reducing deforestation relative to a baseline scenario describing carbon emissions and removals from forest-cover change expected in the absence of REDD+. Defining a credible and accurate baseline is both critical and challenging. One approach considered promising is spatial modelling to project forest-cover change on the basis of historical trends; yet few such projections have been validated at a national scale. We develop and validate a novel GEOMOD projection of forest-cover change in Panama over 2000–2008, based on trends over 1990–2000 and 25 drivers of forest-cover change. Compared with the actual landscape of 2008, our projection is 85.2% accurate at a 100-m pixel resolution. More error is attributable to the location of projected forest (8.6%) than to its area (6.2%). Accuracy was least where forest regeneration predominated (80%), and greatest where deforestation predominated (90%). Despite the sophistication of our projection, it is slightly less accurate than if we had assumed no forest-cover change over 2000–2008. We identify factors limiting projection accuracy, including the complexity of forest-cover change, the spatial variability of forest-carbon density, and the relatively small area of change at the national scale. We conclude that, with the exception of contexts where forest-cover change is significant and straightforward and where forest-carbon density relatively uniform (e.g., agricultural frontiers), spatially projected baselines are of limited value for REDD+ – their accuracy is too limited given their relative lack of transparency. Simpler, relatively coarse scale, retrospective baselines are recommended instead.  相似文献   
39.
Uncertainty of best management practice (BMP) performance in future climates is an important consideration for water resources managers. The objective of this study was to quantify the level of uncertainty in performance of seven agricultural BMPs due to climate change in reducing sediment, total nitrogen, and total phosphorus loads. The Soil and Water Assessment Tool coupled with mid‐21st century climate data from the Community Climate System Model were used to develop climate change scenarios for the Tuttle Creek Lake Watershed of Kansas and Nebraska. Uncertainty level of each BMP was determined using Latin Hypercube Sampling, a constrained Monte Carlo sampling technique. Samples were taken from distributions of several variables (monthly precipitation, temperature, CO2, and BMP implementation parameters). Cumulative distribution functions were constructed for each BMP, pollutant, and climate scenario combination. Results demonstrated that BMP performance uncertainty is amplified in the extreme climate scenario. Among BMPs, native grass replacement generally had higher uncertainty level but also had the greatest reductions. This study highlights the importance of incorporating uncertainty analysis into mitigation strategies aiming to reduce negative impacts of climate change on water resources. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
40.
Extreme erosion events can produce large short-term sediment fluxes. Such events complicate erosion rates estimated from cosmogenic nuclide concentrations in river sediment by providing sediment with a concentration different from the long-term basin average. We present a detrital 10Be study in southern Taiwan, with multiple samples obtained in a time sequence bracketing the 2009 Typhoon Morakot, to assess the impact of landslide sediment on 10Be concentrations (N10Be) in river sediment. Sediment samples were collected from 13 major basins, two or three times over the last decade, to observe the temporal variation of N10Be. Landslide inventories with time intervals of 5–6 years were used to quantify sediment flux changes. A negative correlation between N10Be and landslide areal density indicates dilution of N10Be by landslide sediment. Denudation rates estimated from the diluted N10Be can be up to three times higher than the lowest rate derived from the same basins. Observed increases imply that, 3 years after the passage of Typhoon Morakot, fluvial channels still contain a considerable amount of sediment provided by hillslope landslides during the event. However, higher N10Be in 2016 samples indicate that the contribution from landslide sediment at the sampled grain size has decreased with time. The correlation between changes in N10Be and landslide area and volume is not strong, likely resulting from the stochastic and complex nature of sediment transport. To simultaneously evaluate the volume of landslide-derived sediment and estimate the background denudation rate, associated with less impulsive sediment supply, we constructed a sediment-mixing model with the time series of N10Be and landslide inventories. The spatial pattern of background erosion rate in southern Taiwan is consistent with the regional tectonic framework, indicating that the landscape is evolving mainly in response to the tectonic forcing, and this signal is modified, but not obscured by impulsive sediment supply. © 2019 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号