首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   3篇
  国内免费   3篇
测绘学   12篇
大气科学   8篇
地球物理   19篇
地质学   78篇
天文学   22篇
综合类   2篇
自然地理   1篇
  2022年   6篇
  2021年   1篇
  2020年   6篇
  2019年   2篇
  2018年   13篇
  2017年   11篇
  2016年   12篇
  2015年   8篇
  2014年   9篇
  2013年   6篇
  2012年   11篇
  2011年   4篇
  2010年   7篇
  2009年   8篇
  2008年   11篇
  2007年   4篇
  2006年   6篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1996年   2篇
排序方式: 共有142条查询结果,搜索用时 671 毫秒
61.
In the Himalayan states of India, with increasing population and activities, large areas of forested land are being converted into other land-use features. There is a definite cause and effect relationship between changing practice for development and changes in land use. So, an estimation of land use dynamics and a futuristic trend pattern is essential. A combination of geospatial and statistical techniques were applied to assess the present and future land use/land cover scenario of Gangtok, the subHimalayan capital of Sikkim. Multi-temporal satellite imageries of the Landsat series were used to map the changes in land use of Gangtok from 1990 to 2010. Only three major land use classes (built-up area and bare land, step cultivated area, and forest) were considered as the most dynamic land use practices of Gangtok. The conventional supervised classification, and spectral indices-based thresholding using NDVI (Normalized Difference Vegetation Index) and SAVI (Soil Adjusted Vegetation Index) were applied along with the accuracy assessments. Markov modelling was applied for prediction of land use/land cover change and was validated. SAVI provides the most accurate estimate, i.e., the difference between predicted and actual data is minimal. Finally, a combination of Markov modelling and SAVI was used to predict the probable land-use scenario in Gangtok in 2020 AD, which indicted that more forest areas will be converted for step cultivation by the year 2020.  相似文献   
62.
Three major projects initiated by the European Commission within its 7th Framework Programme that have studied the weather phenomena and their projections to the future in relation to their impacts and implications to the European transport systems have recently been concluded. All of the transport modes were covered, as well as all of the critical phenomena present within the European area. The three projects (that ran from 2009 and 2012) are as follows: (1) EWENT (Extreme Weather impacts on European Networks of Transport—www.ewent.vtt.fi); (2) ECCONET (Effects of climate change on the inland waterway networks—www.ecconet.eu); (3) WEATHER (Weather Extremes: Assessment of Impacts on Transport and Hazards for European Regions—www.weather-project.eu). In this Foreward to the Special Issue on “Vulnerability of Transportation to Extreme Weather and Climate Change,” the key results of the above three projects are addressed concisely, offering the reader a broader view of their findings; since some of these are enveloped in the research papers hosted in this volume, they will not be covered in detail. However, the rich output of these projects in the form of “Project Deliverables” and “Reports” is also an important source of information on the findings and results from these three projects which are publicly available on the projects’ Web sites. The purpose of this Foreward is to bring to the attention of the interested reader these sources and overview briefly some of the projects’ outcomes. Also, a short comparative discussion on selected findings is made, outlining agreements and disagreements between the projects.  相似文献   
63.
The E-W running Salem-Attur shear zone demarcates the tectonic boundary between Archaean Dharwar Craton in the north and Proterozoic Southern granulite terrane in the south. This study reveals that the shear zone is a low angle thrust. The thrust zone is around 10 m thick and it merges with the main shear zone along the strike. The thrust is developed on charnockite near Odyarpatti, which is retrograded into schists. Further, it is marked by gently dipping mylonitic foliation and subhorizontal lineation. The S-C fabric, mantled porphyroclasts and intragranular faults indicate northeasterly slip along the thrust. Recumbent shear folds SF1 are developed within the thrust zone. The thrust has been folded by late stage F2 fold which has brought variation in the orientation of the mylonitic foliation from subhorizontal to vertical attitude; the mylonitic lineations have been rotated to subvertical orientation also. Additionally, the F2 crenulations and shear cleavages and intersection lineations are superimposed on the mylonitic fabric. Thrusting along the Salem-Attur shear zone is probably the cause for upliftment of the charnockites to the upper crust. Post-upliftment stage has witnessed brittle deformation in the form of development of shear fractures in NNE-SSW and E-W directions. Pseudotachylites are emplaced along these fractures.  相似文献   
64.
Infrastructure and communication facilities are repeatedly affected by ground deformation in Gharwal Himalaya, India; for effective remediation measures, a thorough understanding of the real reasons for these movements is needed. In this regard, we undertook an integrated geophysical and geotechnical study of the Salna sinking zone close to the Main Central Thrust in Garhwal Himalaya. Our geophysical data include eight combined electrical resistivity tomography (ERT) and induced polarization imaging (IPI) profiles spanning 144–600 m, with 3–10 m electrode separation in the Wenner–Schlumberger configuration, and five micro-gravity profiles with 10–30 m station spacing covering the study region. The ERT sections clearly outline the heterogeneity in the subsurface lithology. Further, the ERT, IPI, and shaliness (shaleyness) sections infer the absence of clayey horizons and slip surfaces at depth. However, the Bouguer gravity analysis has revealed the existence of several faults in the subsurface, much beyond the reach of the majority of ERT sections. These inferred vertical to subvertical faults run parallel to the existing major lineaments and tectonic elements of the study region. The crisscross network of inferred faults has divided the entire study region into several blocks in the subsurface. Our studies stress that the sinking of the Salna village area is presently taking place along these inferred vertical to subvertical faults. The Chamoli earthquake in March 1999 probably triggered seismically induced ground movements in this region. The absence of few gravity-inferred faults in shallow ERT sections may hint at blind faults, which could serve as future source(s) for geohazards in the study region. Soil samples at two sites of study region were studied in a geotechnical laboratory. These, along with stability studies along four slope sections, have indicated the critical state of the study region. Thus, our integrated studies emphasize the crucial role of micro-gravity in finding fine subsurface structure at deeper depth level; supported by ERT and IPI at shallow depth intervals, they can satisfactorily explain the Salna sinking zone close to Lesser Himalaya. The geotechnical studies also lend support to these findings. These integrated studies have yielded a better understanding of the mass-wasting mechanism for the study region.  相似文献   
65.
The properties of cylindrical and spherical dust acoustic (DA) solitary and shock waves in an unmagnetized electron depleted dusty plasma consisting of inertial dust fluid and ions featuring Tsallis statistics are investigated by employing the reductive perturbation technique. A Korteweg-de Vries Burgers (KdVB) equation is derived and its numerical solution is obtained. The effects of ion nonextensivity and dust kinematic viscosity on the basic features of DA solitary and shock waves are discussed in nonplanar geometry. It is found that nonextensive nonplanar DA waves behave quite differently from their one-dimensional planar counterpart.  相似文献   
66.
Very Low Frequency (VLF) radio waves propagate through the Earth-ionosphere waveguide. Irregularities caused by excess or deficient extreme ultra-violet and X-rays, which otherwise sustain the ionosphere, change the waveguide properties and hence the signals are modified. We report the results of monitoring of the NWC transmitter (19.8?kHz) by a receiver placed at Khukurdaha (22°27′N, 87°45′E) during the partial solar eclipse (75?%) of 15th January, 2010. The propagation path from the transmitter to the receiver crosses the annular eclipse belt. We got a clear depression in the data during the period of the eclipse. Most interestingly, there was also a X-ray flaring activity in the sun on that day which reached its peak (C-type) right after the time when the eclipse reached its maximum. We saw the effects of the occultation of this flare in our VLF signal since a part of the X-ray active region was clearly blocked by the moon. We quantitatively compared by using analogies with previous observations and found best fitting parameters for the time when the flare was occulted. We then reconstructed the VLF signal in the absence of the occulted flare. To our knowledge, this is the first such incident where the solar flare was observed through lunar occultation and that too during a partial eclipse.  相似文献   
67.
Preexisting flaws and rock heterogeneity have important ramifications on the process of rock fracturing and on rock stability in many applications. Therefore, there is great interest in numerical modelling of rock fracture and the underlying mechanisms. We simulated damage evolution and fracture propagation in sandstone specimens containing a preexisting 3-D surface flaw under uniaxial compression. We applied the linear elastic damage model based on the unified strength theory following the rock failure process analysis code. However, in contrast to the rock failure process analysis code, we used the finite element method with tetrahedron elements on unstructured meshes. It provided higher geometrical flexibility and allowed for a more accurate representation of the disk-shaped flaw with various flaw depths, angles, and lengths through locally adapted meshes. The rock heterogeneity was modelled by sampling the initial local Young's modulus from a Weibull distribution over a cubic grid. The values were then interpolated to the computational finite element method mesh. This method introduced an additional length scale for the rock heterogeneity represented by the cell size in the sampling grid. The generation of three typical surface cracking patterns, called wing cracks, anti-wing cracks, and far-field cracks, were identified in the simulation results. These depend on the geometry of the preexisting surface flaw. The simulated fracture propagation, coalescence types, and failure modes for the specimens with preexisting surface flaw show good agreement with recent experimental studies.  相似文献   
68.
In this paper, we study the uncertainty quantification in inverse problems for flows in heterogeneous porous media. Reversible jump Markov chain Monte Carlo algorithms (MCMC) are used for hierarchical modeling of channelized permeability fields. Within each channel, the permeability is assumed to have a log-normal distribution. Uncertainty quantification in history matching is carried out hierarchically by constructing geologic facies boundaries as well as permeability fields within each facies using dynamic data such as production data. The search with Metropolis–Hastings algorithm results in very low acceptance rate, and consequently, the computations are CPU demanding. To speed-up the computations, we use a two-stage MCMC that utilizes upscaled models to screen the proposals. In our numerical results, we assume that the channels intersect the wells and the intersection locations are known. Our results show that the proposed algorithms are capable of capturing the channel boundaries and describe the permeability variations within the channels using dynamic production history at the wells.  相似文献   
69.
In the present communication of our series of papers dealing with the accretion flows in the pseudo-Kerr geometry, we discuss the effects of viscosity on the accretion flow around a rotating black hole. We find the solution topologies and give special attention to the solutions containing shocks. We draw the parameter space where standing shocks are possible and where the shocks could be oscillating and could produce quasi-periodic oscillations (QPOs) of X-rays observed from black hole candidates. In this model, the extreme locations of the shocks give the upper limits of the QPO frequencies  (νQPO)  which could be observed. We show that both the viscosity of the flow and the spin of the black hole a increase the QPO frequency while, as expected, the black hole mass reduces the QPO frequencies. Our major conclusion is that the highest observed frequency gives a strict lower limit of the spin. For instance, a black hole exhibiting  νQPO∼ 400  and  700 Hz  must have the spin parameters of   a > 0.25  and  >0.75  , respectively, provided viscosity of the flow is small. We discuss the implications of our results in the light of observations of QPOs from black hole candidates.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号