首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   4篇
  国内免费   1篇
测绘学   22篇
大气科学   5篇
地球物理   58篇
地质学   119篇
海洋学   13篇
天文学   28篇
自然地理   5篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   16篇
  2017年   18篇
  2016年   7篇
  2015年   2篇
  2014年   10篇
  2013年   12篇
  2012年   14篇
  2011年   12篇
  2010年   8篇
  2009年   14篇
  2008年   6篇
  2007年   7篇
  2006年   11篇
  2005年   11篇
  2004年   5篇
  2003年   3篇
  2002年   4篇
  2001年   5篇
  2000年   9篇
  1999年   3篇
  1998年   2篇
  1997年   6篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   7篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   5篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
  1976年   1篇
  1972年   1篇
  1971年   2篇
  1966年   1篇
  1965年   1篇
排序方式: 共有250条查询结果,搜索用时 727 毫秒
91.
This study was carried out to analyze groundwater quality in selected villages of Nalbari district, Assam, India, where groundwater is the main source of drinking water. 40 groundwater samples collected from hand pumps and analyzed for pH, EC, TDS, Ca2+, Mg2+, Na+, K+, HCO3 , SO4 2−, Cl and F. Chemical analysis of the groundwater showed that mean concentration of cations in (mg/L) is in the order Ca2+ > Mg2+ > Na+ > K+ while for anions it is HCO3  > Cl > SO4 2− > F. Fluoride concentration was recorded in the range of 0.02–1.56 mg/L. As per the desirable and maximum permissible limits for fluoride in drinking water recommended by WHO and by Bureau of Indian Standards (BIS), which is 1.5 mg/L, the groundwater of about 97% of the samples were found to be suitable for drinking purpose. The suitability of the groundwater for irrigation purpose was investigated by some determining factors such as sodium adsorption ratio, soluble sodium percentage, Kelly’s ratio and electrical conductivity. The value of the sodium absorption ratio and electrical conductivity of the groundwater samples were plotted in the US Salinity laboratory diagram for irrigation water. Most of the groundwater samples fall in the field of C2S1 and C3S1 indicating medium to high salinity and low sodium water, which can be used for irrigation on almost all types of soil with little doubt of exchangeable sodium. The hydrochemical facies shows that the groundwater is Ca-HCO3 type.  相似文献   
92.
An integrated study of the sedimentology, micropalaeontology, mineralogy and geochemistry of glauconites in the Oligocene Maniyara Fort Formation (western Kutch, India), has been undertaken. Authigenic glauconites, mostly of evolved type, formed within a back‐barrier lagoonal environment. Foraminifera help constrain the biostratigraphy and along with sedimentological evidence, provide information on the depositional conditions. Glauconite in the Maniyara Fort Formation occurs either as infillings within intra‐particle pores of larger foraminifers, or as an altered form of faecal pellets. X‐ray diffraction studies reveal the less mature nature of glauconite infillings compared to the glauconite pellets. Electron microprobe investigation confirms a relative enrichment of K2O and total Fe2O3 in the latter. Both varieties of glauconite formed by initial authigenic precipitation of K‐poor glauconite and subsequently matured by addition of potassium in the interlayer sites and fixation of total iron in the octahedral sites; calcium, magnesium and aluminum were released from the glauconite structure concomitantly. Alkaline conditions during the entire process of glauconite formation did not allow dissolution of foraminiferal tests. Mineralogical and chemical characteristics of the Maniyara Fort Formation glauconites are more similar to deep marine glauconites than those reported from other shallow or marginal marine settings. A low negative cerium anomaly, as well as abundant pyrite, suggests formation of glauconite in sub‐oxic micro‐environments, created by decay of organic matter associated with foraminiferal chambers and faecal pellets. Sub‐oxic condition apparently prevailed relatively longer within the Maniyara Fort Formation lagoons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
93.
Increasing CO2 emissions and global warming are posing problems for carbon management. Results of laboratory experiments, probing the carbon sequestration potential of picrites from Igatpuri Formation, Deccan Flood Basalt Volcanic Province, India are reported here. The picrites which were reacted with water and carbon dioxide in its supercritical condition for about 5 months duration at 100°C temperature and 60 bars of CO2 pressure clearly show the growth of secondary carbonates over the surface as well as in the intergranular spaces. SEM-EDS studies, Infrared spectroscopic analysis and Raman spectrographic studies also confirm the development of secondary carbonates in the reacted picrite samples.  相似文献   
94.
Spatial distribution of the carbon and nitrogen content and their isotopic enrichment in suspended matter and sediments were measured in the Godavari estuary to identify the sources and transformation mechanism of organic matter. Significant variability in isotopic distribution was found over the entire length of the Godavari estuary, suggesting multiple sources of organic matter. The mean isotopic ratios (δ13Csed −25.1 ± 0.9, δ13Csus −24.9 ± 1, δ15Nsed 8.0 ± 2 and δ15Nsus 6.5 ± 0.9‰) and elemental concentrations (Csed 0.45 ± 0.2%, Csus 0.9 ± 0.7%, Nsed 0.07 ± 0.05% and Nsus 0.16 ± 0.1%) support a predominantly terrigenous source. Significant enrichment in the isotopic ratios of δ13C from the upper to lower estuary in both suspended (−27.5 and −24.3‰, respectively) and sedimentary (−26.2 and −24.9‰, respectively) phases indicates a decrease in the influence of terrigeneous material toward the mouth of the estuary. A significant positive relationship exists between the δ13C of suspended and sediment, which indicates that these two organic carbon pools are likely coupled in the form of a significant exchange between the two phases. A positive relationship exists between chlorophyll a and suspended organic matter, which may mean that a significant source of organic carbon is the in situ produced phytoplankton. But, applying a simple mixing model to our isotopes, data yielded about 46% as the contribution of the terrestrial source to suspended matter, which may support the excessive heterotrophic activity in the Godavari estuary reported earlier.  相似文献   
95.
We studied, separately, the effect of the cladocerans Alona glabra and Macrothrix triserialis on the population growth of the rotifer Euchlanis dilatata using three different food types (Chlorella and Scenedesmus, live or dead, offered on a comparable dry weight basis, 3.16 μg C ml−1). Regardless of the presence or absence of competition, E. dilatata cultured using Chlorella (live or dead) showed a higher population growth as compared to Scenedesmus. Compared to heat-killed C. vulgaris, E. dilatata cultured alone and fed on live algae reached higher abundances. Both cladoceran species had an adverse effect on the population growth of Euchlanis, but did not eliminate the rotifers. Of the two cladocerans, M. triserialis had a far more adverse effect on the population densities of E. dilatata as compared to A. glabra. E. dilatata also influenced the population growth of A. glabra and M. triserialis, the former being more adversely affected than the latter. When the egg ratios of E. dilatata were plotted as a function of population density, a significantly inverse relation was obtained only in treatments containing Chlorella but not for other treatments. Statistically the rate of population increase (r) per day of E. dilatata was adversely affected by the diet type and the presence of competing species. The interaction of diet type X competition was also significant. For A. glabra, the presence of E. dilatata and the diet type, but not their interaction, significantly influenced the r. On the other hand for M. triserialis, only the diet type was significant. Our results suggest that the competitive outcome between rotifers and cladocerans was dependent on diet type.  相似文献   
96.
We quantified the seasonal changes in the zooplankton abundances collected from the Huetzalin Lake (Mexico City, Mexico) for two years (February 2003–January 2004 and then March 2005–February 2006). Selected physicochemical variables (Secchi depth, temperature, pH, conductivity, dissolved oxygen, phosphorus, nitrogen, carbon and chlorophyll a concentration) were also measured at the time of zooplankton collection. The data on zooplankton abundances and the physicochemical variables were subjected to multiple correlation analysis and we also derived Shannon–Wiener species diversity index. Secchi depth ranged from 9 to 65 cm. Generally the lake was alkaline (pH 7–12). The conductivity ranged from 500–1000 mS cm−1, while the mean water temperature was 20.5 °C. Dissolved oxygen levels were generally >3 mg L−1 and were higher in the winter than warmer months. Nitrates (90–95 μg L−1) and phosphates (.2–.5 mg L−1) indicated that the water was eutrophic. Chlorophyll a levels ranged from 143 to 696 μg L−1 during the study period. The zooplankton community was dominated by rotifers (46 species), followed by cladocerans (9 species) and there were only two copepod species. The dominant rotifer species were Brachionus angularis, Brachionus calyciflorus, Brachionus havanaensis, Brachionus quadridentatus, Lecane bulla and Polyarthra vulgaris. Rare rotifer species in Lake Huetzalin were Lecane ohioensis, Dicranophorus forcipatus, Lecane pyriformis, Lindia torulosa, Pleurotrocha petromyzon and Brachionus durgae. Highest densities (occasional peaks of 400 ind L−1) of B. quadridentatus occurred between April and December, while B. havanaensis reached peak densities, during June to October. B. calyciflorus reached densities higher than 1240 ind L−1 during May–September. Cladoceran and copepod densities in Lake Huetzalin were much lower than that of the rotifers. This study confirmed the earlier findings that Xochimilco system of canals is dominated by rotifers and the crustacean zooplankton have much lower abundances possibly due to predation from fish.  相似文献   
97.
Improper utilization of natural resources without any conservation work is the prime cause of the watershed deterioration. Fast developmental activities and population pressure in the hills of Khanapara?CBornihat area near Guwahati city (about 10?km east of Guwahati) results rapid alteration of the land use/land cover in the recent times. This also causes the growth of land use over the unsuitable topography. As a result, there is a general degradation of the natural resources within the area. So, urgent measures have to be adopted to take up the conservation measure for the management of natural resources. Watershed wise conservation is considered to be the most acceptable and convenient approach. In the context of watershed management, watershed prioritization gained importance in natural resource management. The present study makes an attempt to prioritize the sub-watersheds for adopting the conservation measure. The prioritization is based on land use and slope analysis using Remote Sensing and GIS techniques in Khanapara?CBornihat area of Assam and Meghalaya state (India). The study area of 323.17?sq. km is divided into three 5th order, four 4th order and two 3rd order sub-watersheds. Land use/Land cover change analysis of the sub-watersheds has been carried out using multi temporal data of SOI toposheets of 1972 and IRS LISS III imagery of 2006. The study shows the significance changes in land use pattern especially in settlement and forest lands from 1972 to 2006. Slope map of the sub-watersheds prepared from the contour values in the toposheets show the wide variation of slope in the area ranging from 0° to 87°. Based on the extent/nature of land use/land cover changes over time and land use/land cover??slope relationship analysis, the sub-watersheds are classified into three categories as high, medium and low in terms of priority for conservation and management of natural resources.  相似文献   
98.
In this study, biometric and structural engineering tool have been used to examine a possible relationship within ChuariaTawuia complex and micro-FTIR (Fourier Transform Infrared Spectroscopy) analyses to understand the biological affinity of Chuaria circularis Walcott, collected from the Mesoproterozoic Suket Shales of the Vindhyan Supergroup and the Neoproterozoic Halkal Shales of the Bhima Group of peninsular India. Biometric analyses of well preserved carbonized specimens show wide variation in morphology and uni-modal distribution. We believe and demonstrate to a reasonable extent that C. circularis most likely was a part of Tawuia-like cylindrical body of algal origin. Specimens with notch/cleft and overlapping preservation, mostly recorded in the size range of 3–5 mm, are of special interest. Five different models proposed earlier on the life cycle of C. circularis are discussed. A new model, termed as ‘Hybrid model’ based on present multidisciplinary study assessing cylindrical and spherical shapes suggesting variable cell wall strength and algal affinity is proposed. This model discusses and demonstrates varied geometrical morphologies assumed by Chuaria and Tawuia, and also shows the inter-relationship of ChuariaTawuia complex.Structural engineering tool (thin walled pressure vessel theory) was applied to investigate the implications of possible geometrical shapes (sphere and cylinder), membrane (cell wall) stresses and ambient pressure environment on morphologically similar C. circularis and Tawuia. The results suggest that membrane stresses developed on the structures similar to ChuariaTawuia complex were directly proportional to radius and inversely proportional to the thickness in both cases. In case of hollow cylindrical structure, the membrane stresses in circumferential direction (hoop stress) are twice of the longitudinal direction indicating that rupture or fragmentation in the body of Tawuia would have occurred due to hoop stress. It appears that notches and discontinuities seen in some of the specimens of Chuaria may be related to rupture suggesting their possible location in 3D Chuaria.The micro-FTIR spectra of C. circularis are characterized by both aliphatic and aromatic absorption bands. The aliphaticity is indicated by prominent alkyl group bands between 2800–3000 and 1300–1500 cm−1. The prominent absorption signals at 700–900 cm−1 (peaking at 875 and 860 cm−1) are due to aromatic CH out of plane deformation. A narrow, strong band is centred at 1540 cm−1 which could be COOH band. The presence of strong aliphatic bands in FTIR spectra suggests that the biogeopolymer of C. circularis is of aliphatic nature. The wall chemistry indicates the presence of ‘algaenan’—a biopolymer of algae.  相似文献   
99.
100.
Baruah  Saurabh  Bramha  Anjali  Sharma  Sangeeta  Baruah  Santanu 《Natural Hazards》2019,97(3):1001-1023
Natural Hazards - The 18 September 2011 earthquake in Sikkim was one the most devastating earthquake in Sikkim Himalaya in India–Asia collision boundary. The source characteristic of this...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号