首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   8篇
  国内免费   2篇
测绘学   30篇
大气科学   9篇
地球物理   44篇
地质学   67篇
海洋学   3篇
天文学   41篇
综合类   3篇
自然地理   2篇
  2024年   1篇
  2022年   2篇
  2021年   1篇
  2020年   5篇
  2019年   4篇
  2018年   10篇
  2017年   18篇
  2016年   8篇
  2015年   13篇
  2014年   22篇
  2013年   9篇
  2012年   10篇
  2011年   16篇
  2010年   8篇
  2009年   6篇
  2008年   6篇
  2007年   4篇
  2006年   9篇
  2005年   4篇
  2004年   2篇
  2003年   9篇
  2002年   5篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
排序方式: 共有199条查询结果,搜索用时 15 毫秒
171.
A disproportionate increase or decrease in water table in response to minor water input or drainage is observed in shallow water table conditions inside drainage lysimeters. This increase happens because the capillary fringe of the shallow water table reaches up to or near the surface (Wieringermeer effect). The correlations between water table level changes and rainfall, seepage irrigation, drip irrigation, and drainage were analysed. Correlations with rainfall, seepage irrigation, and drainage were high (R2 ranged from 0·46 to 0·97). Drip irrigation had low correlations due to the low rates of application (R2 ranged from 0·26 to 0·44). Conventional methods of calculating recharge, such as multiplying the specific yield with the water table fluctuations, cannot be used for Wieringermeer effect situations. A method using water balance data and soil moisture at different depths in the lysimeters was developed to estimate recharge and upflux. The recharge results were used to develop the apparent specific yield Sya, which could be used to calculate consequent recharge events from water table fluctuation data. Combining the water table fluctuation relationships developed with the Sya value will allow the prediction of recharge from rainfall and irrigation events without the need for soil moisture equipment. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
172.
Gosain  Sanjay  Prasad Choudhary  Debi 《Solar physics》2003,217(1):119-132
Simultaneous observations of Stokes profiles in photospheric Fei (630.15 nm and 630.25 nm) and chromospheric Mgi b 1 and b 2 (518.4 nm and 517.3 nm) lines over a sunspot are presented. Observations were carried out using the Advanced Stokes Polarimeter of HAO/NSO, VTT, SacPeak, U.S.A. The Stokes-V amplitude asymmetries for these lines are analyzed. The values of amplitude asymmetry in Mgb lines are negative in disk-center-side penumbra while they are positive in limb-side penumbra. This trend is similar in nature to photospheric Fei line observations. Further, the spatial distribution of Stokes-V asymmetry is analyzed using Net Circular Polarization (NCP) maps. The chromospheric and photospheric NCP maps are different in many aspects. These observations with longitudinal magnetic field, estimated using weak field approximation, are discussed in this paper.  相似文献   
173.
Cyanobacteria are known to form a crust on soil surfaces holding soil particles together and thereby offering resistance to erosion. A controlled experiment was carried out to throw light on this issue. The experiment consisted of subjecting erosion cups filled with soil to artificial rainfall in the laboratory. Three sets of erosion cups, each set consisting of six, were used. One set consisted of soil with inoculated cyanobacteria and the second set consisted of soil with naturally colonized cyanobacteria, both over a period of about 8 months. The third set consisted of soil with no bacterial growth. The results indicate that the soil erosion cups with the inoculated cyanobacterial crust had at least one order of magnitude less erosion for coarse soils, and about two orders of magnitude less erosion for fine soils, compared with erosion cups with no bacterial crust. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
174.
Ice nucleating particle(INP) measurements were made at two high-altitude stations in India. Aerosols collected on filter paper at Girawali Observatory, Inter University Center for Astronomy Astrophysics(IGO), and at the Radio Astronomy Center, Ooty(RAC), were activated in deposition mode using a thermal gradient diffusion chamber to determine the INP concentrations. The measurement campaigns at IGO were conducted during 2011, 2013 and 2014, and at RAC during 2013 and 2014. When the aerosol samples were exposed to an ice supersaturation of between 5% and 23% in the temperature range~(-1)7.6?C to-22?C, the maximum INP number concentration at IGO and RAC was 1.0 L~(-1) and 1.6 L~(-1), respectively.A maximum correlation coefficient of 0.76 was observed between the INP number concentration and ice supersaturation. The airmass trajectories analyzed for the measurement campaigns showed that the Arabian Desert and arid regions were the main INP contributors. Elemental analysis of particles showed the presence of Na, Cl, Si, Al, Fe, Cu, Co, Cd, S, Mn and K, as well as some rare-Earth elements like Mo, Ru, La, Ce, V and Zr. When aerosols in the size range 0.5–20 μm were considered, the fraction that acted as INPs was 1 : 10~4 to 1 : 10~6 at IGO, and 1 : 10~3 to 1 : 10~4 at RAC. The higher ratio of INPs to aerosols at RAC than IGO may be attributable to the presence of rare-Earth elements observed in the aerosol samples at RAC, which were absent at IGO.  相似文献   
175.
In high-altitude areas, snow cover plays a significant role in mountainous hydrology. Satluj, which is a snow-fed river, is a part of the Indus River system in the western Himalayas. Snow cover area (SCA) variability in this river basin affects the spatio-temporal flow availability and avalanche events. Keeping this in mind, the present study focuses on SCA variability and its relationship with various topographical features such as elevation, slope and aspect. The study has been carried out in the upper part of the Satluj River Basin on the basis of MODIS Terra (MOD10A2) data from 2001 to 2014. It has been noticed that the average annual SCA in this part of the Satluj River Basin varies from 44 to 56% with an average of about 48% of the total basin area of 16, 650 km2. Further, snow accumulation and depletion curves have been suggested for assessing the SCA in the study area.  相似文献   
176.
177.
178.
179.
Access to water resources is one of the major challenges being faced worldwide. Water scarcity, particularly groundwater resource, is the major ubiquitous concern for the country. Almost half of the country is reeling under severe ground water crisis due to anthropogenic and natural reasons (basalt rock surface). Agra region situated in the western part of Uttar Pradesh state of India has a semi-arid climate. The study area, which has a history of water scarcity since medieval ages, has seen a spurt of acute water shortage in recent times owing to the expansion of a very dense built-up area and excessive haulage accompanied by decline in rainfall. A study was under taken for identifying the trends in pre- and post-monsoon groundwater levels for Agra city, Uttar Pradesh. Pre-monsoon and post-monsoon groundwater depth data of 16 observation wells for the 2007–2016 period were collected and analyzed using ARC GIS 10.2 software. The rainfall trend during the study period was also studied to understand its role in groundwater fluctuation level. Statistical tests like Mann-Kendall, Sen’s slope estimator, and linear regression model were applied to understand the trend and rate of change in groundwater level. The land use/land cover map of the study area was integrated with groundwater map to have a primary understanding of the spatial trend of groundwater scenario of the study area. The result obtained is quite alarming for the city’s groundwater scenario. Results showed that the groundwater levels had significantly declined during 2007–2016. Average rates of water level decline were 0.228 and 0.267 m/year during pre- and post-monsoon seasons, respectively. There was a rapid decline in water level between 2008 and 2009 and between 2013 and 2014. The average rate of decline of pre- and post-monsoon groundwater level in the city during this period is 0.32 and 0.30 m/year, respectively. Significant decrease in groundwater level is found in 84.21% of wells for pre- and post-monsoon as obtained through Mann-Kendall analysis at 95% confidence level. During pre-monsoon season, the rate of decline according to Sen’s slope estimator varied between 0.74 and 2.05 m/year. Almost similar picture of decline is portrayed through linear regression slope wherein the computed rate of decline varied between 0.75 and 2.05 m/year. During post-monsoon, the rate of decline according to Sen’s slope varied between 0.13 and 1.94 m/year. Similar trend statistic is obtained through linear regression method where the declining rate is between 0.14 and 1.91 m/year. Comparison of the three statistical tests indicates similar nature of declining trend. The result of this research raises concern about the future of groundwater resources in Agra city. The findings of this study will assist planners and decision-makers in developing better land use and water resource management.  相似文献   
180.
This study proposes a simplified 1-parameter SCS-CN model (M5) based on Mishra-Singh (2002) model and soil moisture accounting (SMA) procedure for surface runoff estimation and compares its performance with the existing SCS-CN method (SCS, 1956) (M1), Michel 1-P model (Water Resour Res 41:1-6, 2005) (M2), Sahu 1-P model (Hydrol Process 21:2872-2881, 2007) (M3), and Ajmal et al. model (J Hydrol 530:623-633, 2015) (M4) using large rainfall–runoff dataset of 48,763 events from123 USDA-ARS watersheds. The performance of models was evaluated using three statistical error indices such as Nash-Sutcliffe efficiency (NSE), root mean square error (RMSE), percentage bias (PBIAS), and rank and grading system (RGS). Based on the results obtained, the models can be ranked as follows: M5?>?M4?>?M3?>?M1?>?M2, i.e., model M5 outperformed all the remaining four models M1–M4 and hence is recommended for field applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号