首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3144篇
  免费   92篇
  国内免费   54篇
测绘学   315篇
大气科学   278篇
地球物理   584篇
地质学   1406篇
海洋学   146篇
天文学   444篇
综合类   53篇
自然地理   64篇
  2023年   18篇
  2022年   55篇
  2021年   67篇
  2020年   70篇
  2019年   74篇
  2018年   257篇
  2017年   250篇
  2016年   244篇
  2015年   152篇
  2014年   221篇
  2013年   280篇
  2012年   183篇
  2011年   171篇
  2010年   151篇
  2009年   148篇
  2008年   133篇
  2007年   83篇
  2006年   85篇
  2005年   58篇
  2004年   42篇
  2003年   44篇
  2002年   33篇
  2001年   21篇
  2000年   32篇
  1999年   27篇
  1998年   19篇
  1997年   22篇
  1996年   11篇
  1995年   17篇
  1994年   22篇
  1993年   20篇
  1992年   9篇
  1991年   26篇
  1990年   26篇
  1989年   19篇
  1988年   13篇
  1987年   20篇
  1986年   17篇
  1985年   19篇
  1984年   16篇
  1983年   6篇
  1982年   11篇
  1980年   6篇
  1979年   8篇
  1975年   6篇
  1974年   12篇
  1973年   9篇
  1972年   9篇
  1971年   5篇
  1969年   8篇
排序方式: 共有3290条查询结果,搜索用时 822 毫秒
931.
Forecasting monthly precipitation using sequential modelling   总被引:1,自引:1,他引:0  
In the hydrological cycle, rainfall is a major component and plays a vital role in planning and managing water resources. In this study, new generation deep learning models, recurrent neural network (RNN) and long short-term memory (LSTM), were applied for forecasting monthly rainfall, using long sequential raw data for time series analysis. “All-India” monthly average precipitation data for the period 1871–2016 were taken to build the models and they were tested on different homogeneous regions of India to check their robustness. From the results, it is evident that both the trained models (RNN and LSTM) performed well for different homogeneous regions of India based on the raw data. The study shows that a deep learning network can be applied successfully for time series analysis in the field of hydrology and allied fields to mitigate the risks of climatic extremes.  相似文献   
932.
Long-term data (2003–2015) on meltwater chemistry, mass balance and discharge of a benchmark glacier (Chhota Shigri Glacier, India) were studied to determine any association between these variables. To infer the factors governing the alteration of chemical weathering processes in glacierized basins, multi-annual records of the hydrochemical indices (Ca2++Mg2+/Na++K+) and the C-ratio were also examined. A succession of negative mass balance years has resulted in a decline in solute concentrations in the runoff, as discharge has increased. The (Ca2++Mg2+/Na++K+) and C-ratio are highest during periods of negative annual mass balance, when the spatial extent of the channelized drainage system increases. Conversely, these ratios are lowest in positive mass balance years, when the spatial extent of the channelized drainage system decreases, and chemical weathering in the distributed drainage system becomes more dominant. This paper is the first to show the inter-annual linkages between meltwater chemistry, mass balance and discharge for a valley glacier.  相似文献   
933.
Kumar  V. Sanil  George  Jesbin  Dora  Udhaba  Naseef  Muhammed 《Ocean Dynamics》2019,69(1):29-42
Ocean Dynamics - Directional wave data collected in the coastal area at 10-m water depth for a period of 1 year is used to describe the surface wave dynamics off Mumbai coast. Partitioning...  相似文献   
934.
In the hilly region due to scarcity of the plain area, buildings like set back-step back are more often used and also as a big surge in the telecommunication industries, rooftop tower adaptation is very common story nowadays. In the present study an analogy has been drawn to find out the influence of the rooftop telecommunication tower on the setback-step back building resting on ground at 20° and 30° slopes. A dynamic analysis has been performed and compared on the 4 legged angled section telecommunication tower which is located on the roof top of set back-step back building by varying positions of tower with the existing host structure built up on ground slope of 20° and 30° in both directions(X and Y).  相似文献   
935.
936.
Rainfall data in continuous space provide an essential input for most hydrological and water resources planning studies. Spatial distribution of rainfall is usually estimated using ground‐based point rainfall data from sparsely positioned rain‐gauge stations in a rain‐gauge network. Kriging has become a widely used interpolation method to estimate the spatial distribution of climate variables including rainfall. The objective of this study is to evaluate three geostatistical (ordinary kriging [OK], ordinary cokriging [OCK], kriging with an external drift [KED]), and two deterministic (inverse distance weighting, radial basis function) interpolation methods for enhanced spatial interpolation of monthly rainfall in the Middle Yarra River catchment and the Ovens River catchment in Victoria, Australia. Historical rainfall records from existing rain‐gauge stations of the catchments during 1980–2012 period are used for the analysis. A digital elevation model of each catchment is used as the supplementary information in addition to rainfall for the OCK and kriging with an external drift methods. The prediction performance of the adopted interpolation methods is assessed through cross‐validation. Results indicate that the geostatistical methods outperform the deterministic methods for spatial interpolation of rainfall. Results also indicate that among the geostatistical methods, the OCK method is found to be the best interpolator for estimating spatial rainfall distribution in both the catchments with the lowest prediction error between the observed and estimated monthly rainfall. Thus, this study demonstrates that the use of elevation as an auxiliary variable in addition to rainfall data in the geostatistical framework can significantly enhance the estimation of rainfall over a catchment.  相似文献   
937.
Karakoram Himalaya(KH) has continental climatic conditions and possesses largest concentration of glaciers outside the polar regions. The melt water from these glaciers is a major contributor to the Indus river. In this study, various methods have been used to estimate the ice volume in the Karakoram Range of glaciers such as Coregistration of Optically Sensed Images and Correlation(COSI-Corr) method and Area-Volume relations. Landsat 8 satellite data has been used to generate the ice displacement, velocity and thickness map. Our study for 558 Karakoram glaciers revealed that the average ice thickness in Karakoram is 90 m. Ground Penetrating Radar(GPR) survey has been conducted in one of the KH glacier i.e. Saser La glacier and the collected GPR data is used for the validation of satellite derived thickness map. GPR measured glacier thickness values are found comparable with satellite estimated values with RMSE of 4.3 m. The total ice volume of the Karakoram glaciers is estimated to be 1607±19 km3(1473±17 Gt), which is equivalent to 1473±17 km3 of water equivalent. Present study also covers the analysis of glacier surface displacement, velocity and ice thickness values with reference to glacier mean slope.  相似文献   
938.
In this study, the Glacier Lake Outburst Flood(GLOF) that occurred over Kedarnath in June 2013 was modeled using integrated observations from the field and Remote Sensing(RS). The lake breach parameters such as area, depth, breach, and height have been estimated from the field observations and Remote Sensing(RS) data. A number of modelling approaches, including Snow Melt Runoff Model(SRM), Modified Single Flow model(MSF), Watershed Management System(WMS), Simplified Dam Breach Model(SMPDBK) and BREACH were used to model the GLOF. Estimations from SRM produced a runoff of about 22.7 m3 during 16–17, June 2013 over Chorabari Lake. Bathymetry data reported that the lake got filled to its maximum capacity(3822.7 m3) due to excess discharge. Hydrograph obtained from the BREACH model revealed a peak discharge of about 1699 m3/s during an intense water flow episode that lasted for 10–15 minutes on 17 th June 2013. Excess discharge from heavy rainfall and snowmelt into the lake increased its hydrostatic pressure and the lake breached cataclysmically.  相似文献   
939.
The Agoudal IIAB iron meteorite exhibits only kamacite grains (~6 mm across) without any taenite. The kamacite is homogeneously enriched with numerous rhabdite inclusions of different size, shape, and composition. In some kamacite domains, this appears frosty due to micron‐scale rhabdite inclusions (~5 to 100 μm) of moderate to high Ni content (~26 to 40 wt%). In addition, all the kamacite grains in matrix are marked with a prominent linear crack formed during an atmospheric break‐up event and subsequently oxidized. This feature, also defined by trails of lowest Ni‐bearing (mean Ni: 23 wt%) mm‐scale rhabdite plates (fractured and oxidized) could be a trace of a pre‐existing γ–α interface. Agoudal experienced a very slow rate of primary cooling ~4 °C Ma?1 estimated from the binary plots of true rhabdite width against corresponding Ni wt% and the computed cooling rate curves after Randich and Goldstein (1978). Chemically, Agoudal iron (Ga: 54 ppm; Ge: 140 ppm; Ir: 0.03 ppm) resembles the Ainsworth iron, the coarsest octahedrite of the IIAB group. Agoudal contains multiple sets of Neumann bands that are formed in space and time at different scales and densities due to multiple impacts with shock magnitude up to 130 kb. Signatures of recrystallization due to postshock low temperature mild reheating at about 400 °C are also locally present.  相似文献   
940.
Understanding rates, patterns and types of land use and land cover (LULC) changes are essential for various decision-making processes. This study quantified LULC changes and the effect of urban expansion in three Saudi Arabian cities: Riyadh, Jeddah and Makkah using Landsat images of 1985, 2000 and 2014. Seasonal change of vegetation cover was conducted using normalised difference vegetation index, and object-based image analysis was used to classify the LULC changes. The overall accuracies of the classified maps ranged from 84 to 95%, which indicated sufficiently robust results. Urban area was the most changed land cover, and most of the converted land to urban was from bare soil. The seasonal analysis showed that the change of vegetation cover was not constant due to climatic conditions in these areas. The agricultural lands were significantly decreased between 1985 and 2014, and most of these lands were changed to bare soil due to dwindling groundwater resources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号