首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   513篇
  免费   33篇
  国内免费   14篇
测绘学   12篇
大气科学   69篇
地球物理   134篇
地质学   200篇
海洋学   30篇
天文学   68篇
综合类   3篇
自然地理   44篇
  2023年   4篇
  2022年   2篇
  2021年   18篇
  2020年   18篇
  2019年   18篇
  2018年   21篇
  2017年   18篇
  2016年   27篇
  2015年   24篇
  2014年   27篇
  2013年   31篇
  2012年   29篇
  2011年   42篇
  2010年   27篇
  2009年   25篇
  2008年   27篇
  2007年   26篇
  2006年   14篇
  2005年   8篇
  2004年   13篇
  2003年   11篇
  2002年   5篇
  2001年   8篇
  2000年   2篇
  1999年   7篇
  1998年   6篇
  1997年   5篇
  1996年   8篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1987年   5篇
  1986年   1篇
  1985年   5篇
  1984年   5篇
  1983年   7篇
  1982年   10篇
  1981年   6篇
  1979年   5篇
  1978年   6篇
  1977年   6篇
  1976年   6篇
  1975年   2篇
  1973年   3篇
  1972年   3篇
  1970年   1篇
  1960年   1篇
排序方式: 共有560条查询结果,搜索用时 46 毫秒
531.
Gaussian beam depth migration overcomes the single‐wavefront limitation of most implementations of Kirchhoff migration and provides a cost‐effective alternative to full‐wavefield imaging methods such as reverse‐time migration. Common‐offset beam migration was originally derived to exploit symmetries available in marine towed‐streamer acquisition. However, sparse acquisition geometries, such as cross‐spread and ocean bottom, do not easily accommodate requirements for common‐offset, common‐azimuth (or common‐offset‐vector) migration. Seismic data interpolation or regularization can be used to mitigate this problem by forming well‐populated common‐offset‐vector volumes. This procedure is computationally intensive and can, in the case of converted‐wave imaging with sparse receivers, compromise the final image resolution. As an alternative, we introduce a common‐shot (or common‐receiver) beam migration implementation, which allows migration of datasets rich in azimuth, without any regularization pre‐processing required. Using analytic, synthetic, and field data examples, we demonstrate that converted‐wave imaging of ocean‐bottom‐node data benefits from this formulation, particularly in the shallow subsurface where regularization for common‐offset‐vector migration is both necessary and difficult.  相似文献   
532.
533.
Abstract

In 2007, the Texas legislature created a program to identify environmental flow standards statewide through the coordinated efforts of scientific and stakeholder groups and rulemaking by the Texas Commission on Environmental Quality. To aid in this task, a Hydrology-based Environmental Flow Regime (HEFR) method was developed that combines a suite of user-customizable hydrologic statistics with an implementation framework. Following the concepts of the Natural Flow Paradigm, the methodology includes the separation of a long-term hydrograph into key flow components (e.g. subsistence, base, high-flow pulse and overbank) defined by the Texas Instream Flow Program. Seasonal, annual and inter-annual flow component statistics were then coupled with biology, water quality and geomorphology overlays, where available, and with implementation rules applied to example large-scale water supply projects to support development of environmental flow standards for use in water rights permit conditions. The HEFR methodology and resulting flow recommendations are compared to two contemporary in-stream flow studies and adopted environmental flow standards. Subsistence flows were fairly similar. Baseflows were in a similar range, but fewer than three seasonal levels have sometimes been specified in in-stream flow studies. Episodic events are quite different in terms of magnitude, frequency, duration and applicable number.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Opdyke, D.R., Oborny, E.L., Vaugh, S.K., and Mayes, K.B., 2014. Texas environmental flow standards and the hydrology-based environmental flow regime methodology. Hydrological Sciences Journal, 59 (3–4), 820–830.  相似文献   
534.
A sodar was deployed at Roissy–Charles de Gaulle airport near Paris, France, in 2008 with the aim of improving the forecast of low visibility conditions there. During the winter of 2008–2009, an experiment was conducted that showed that the sodar can effectively detect and locate the top of fog layers which is signaled by a strong peak of acoustic reflectivity. The peak is generated by turbulence activity in the inversion layer that contrasts sharply with the low reflectivity recorded in the fog layer below. A specific version of the 1D-forecast model deployed at Roissy for low visibility conditions (COBEL-ISBA) was developed in which fogs’ thicknesses are initialized by the sodar measurements rather than the information derived from the down-welling IR fluxes observed on the site. It was tested on data archived during the winters of 2008–2009 and 2009–2010 and compared to the version of the model presently operational. The results show a significant improvement—dissipation times of fogs are better predicted.  相似文献   
535.
Data from the SABLES 2006 field campaign are used in order to analyse some of the main processes present along the nocturnal periods: surface-based inversions, low level jets, katabatic winds, wave-like motions, pressure perturbations, etc. These processes have an important influence on the vertical structure (both thermal and dynamical) of the atmospheric boundary layer, and can be better described with the synergetic combination of RASS-SODAR data and in-situ measurements (such as sonic anemometer data and high-resolution pressure series from microbarometers). It is shown how the different air masses and their evolution are easily identified when pressure and RASS-SODAR wind and temperature data are presented together. Likewise, periodic pressure fluctuations observed in the surface array of microbarometers reveal the existence of gravity wave motions whose propagation is better understood after locating the wave ducting layers with the help of RASS-SODAR average wind ant temperature profiles.  相似文献   
536.
Model ALADIN as regional climate model for Central and Eastern Europe   总被引:4,自引:0,他引:4  
Results obtained with two versions of the Limited Area Model (LAM) ALADIN over differently sized integration domains (large, intermediate and small) in the European area are presented in order to investigate both the general model performance and the influence of domain choice on the quality of obtained results. The aim is also to illustrate the issues related to the strategy of selection of the optimal integration domain. Each of these studies has been performed with two versions of the ALADIN model: the first one is ALADIN-CLIMATE developed at CNRM/Météo-France, the second one is ALADIN-CLIMATE/CZ prepared at the Czech Hydrometeorological Institute (CHMI). This leaves us with total of six experiments forced by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-40 reanalysis data. The west Balkan domain covering Bulgaria is used as an evaluation region for investigation of the temporal and spatial properties of simulated precipitation and temperature fields. This region has been selected for its challenging orography making the results obtained here a valuable source for studies leading to further developments in climate modeling. It was found that size of the domain strongly affects the quality of obtained results. We have found that the largest domain reproduces the spatial characteristics of climate (such as bias) very well, but its use results in a poor representation of temporal aspects, which are however captured very well in experiments over both smaller domains. Our findings suggest that there is no optimal choice of domain size, securing the best results for both spatial and temporal evaluation.  相似文献   
537.
Generally landslide dams which exist for several hundreds to thousands of years are considered as stable. We show with an example from the Argentine Andes that such dams can exist for several thousands of years but still may fail catastrophically. Multiple rock avalanches impounded two lakes with surface areas of ~8 km2 and ~600 km2, respectively, in Las Conchas valley, NW Argentina. Surface exposure dating (SED) by 10Be of the rock-avalanche deposits or landslide scars indicates that these landslides occurred at 15,300±2,000 yr and 13,550±900 yr. The dams were stable during a strong earthquake, as suggested by seismites within related lake sediments and by multiple coeval landslides in this region, which occurred at ~7.5 kyr. However, when a further rock-avalanche fell into the lower, smaller lake at 4,800±500 yr the dam downriver was destroyed, presumably by the resulting tsunami wave. The resulting flood also destroyed an additional rock-fall dam which had formed at ~5,630 yr 14C cal BP 30 km downriver. The new dam formed by the second rock avalanche was eroded prior to 3,630 yr 14C cal BP. This dam erosion coincides with an important climatic shift towards more humid conditions in the Central Andes. Our results show that instead of direct effects of strong seismicity on landslide dams, (1) landsliding into a landslide-dammed lake, (2) abrupt hydrological changes, and (3) climate change towards conditions related to enhanced run-off are processes which can produce failures of quasi-stable natural dams.  相似文献   
538.
The question of the survival of the planet Earth as the Sun becomes a red giant and possibly a planetary nebula depends on the maximum extent of the Sun's envelope. This study shows that if the Earth is reached by this envelope, it will be destroyed; but if it is not, it will survive. Present stellar evolution calculations imply that the Earth will be destroyed.  相似文献   
539.
540.
The mode of formation of gullies on Mars, very young erosional–depositional landforms consisting of an alcove, channel, and fan, is one of the most enigmatic problems in martian geomorphology. Major questions center on their ages, geographic and stratigraphic associations, relation to recent ice ages, and, if formed by flowing water, the sources of the water to cause the observed erosion/deposition. Gasa (35.72°S, 129.45°E), a very fresh 7-km diameter impact crater and its environment, offer a unique opportunity to explore these questions. We show that Gasa crater formed during the most recent glacial epoch (2.1–0.4 Ma), producing secondary crater clusters on top of the latitude-dependent mantle (LDM), interpreted to be a layered ice-dust-rich deposit emplaced during this glacial epoch. High-resolution images of a pre-Gasa impact crater ~100 km northeast of Gasa reveal that portions of the secondary-crater-covered LDM have been removed from pole-facing slopes in crater interiors near Gasa; gullies are preferentially located in these areas and channels feeding alcoves and fans can be seen to emerge from the eroding LDM layers to produce multiple generations of channel incision and fan lobes. We interpret these data to mean that these gullies formed extremely recently in the post-Gasa-impact time-period by melting of the ice-rich LDM. Stratigraphic and topographic relationships are interpreted to mean that under favorable illumination geometry (steep pole-facing slopes) and insolation conditions, melting of the debris-covered ice-rich mantle took place in multiple stages, most likely related to variations in spin-axis/orbital conditions. Closer to Gasa, in the interior of the ~18 km diameter LDM-covered host crater in which Gasa formed, the pole-facing slopes display two generations of gullies. Early, somewhat degraded gullies, have been modified by proximity to Gasa ejecta emplacement, and later, fresh appearing gullies are clearly superposed, cross-cut the earlier phase, and show multiple channels and fans, interpreted to be derived from continued melting of the LDM on steep pole-facing slopes. Thus, we conclude that melting of the ice-rich LDM is a major source of gully activity both pre-Gasa crater and post-Gasa crater formation. The lack of obscuration of Gasa secondary clusters formed on top of the LDM is interpreted to mean that the Gasa impact occurred following emplacement of the last significant LDM layers at these low latitudes, and thus near the end of the ice ages. This interpretation is corroborated by the lack of LDM within Gasa. However, Gasa crater contains a robustly developed set of gullies on its steep, pole-facing slopes, unlike other very young post-LDM craters in the region. How can the gullies inside Gasa form in the absence of an ice-rich LDM that is interpreted to be the source of water for the other adjacent and partly contemporaneous gullies? Analysis of the interior (floor and walls) of the host crater suggest that prior to the Gasa impact, the pole-facing walls and floor were occupied by remnant debris-covered glaciers formed earlier in the Amazonian, which are relatively common in crater interiors in this latitude band. We suggest that the Gasa impact cratering event penetrated into the southern portion of this debris-covered glacier, emplaced ejecta on top of the debris layer covering the ice, and caused extensive melting of the buried ice and flow of water and debris slurries on the host crater floor. Inside Gasa, the impact crater rim crest and wall intersected the debris-covered glacier deposits around the northern, pole-facing part of the Gasa interior. We interpret this exposure of ice-rich debris-covered glacial material in the crater wall to be the source of meltwater that formed the very well-developed gullies along the northern, pole-facing slopes of Gasa crater.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号