首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   2篇
  国内免费   5篇
测绘学   6篇
大气科学   18篇
地球物理   15篇
地质学   33篇
海洋学   2篇
天文学   20篇
综合类   6篇
自然地理   4篇
  2023年   2篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   8篇
  2017年   4篇
  2016年   5篇
  2014年   5篇
  2013年   3篇
  2012年   3篇
  2011年   7篇
  2010年   3篇
  2009年   5篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1990年   5篇
  1989年   3篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
排序方式: 共有104条查询结果,搜索用时 46 毫秒
101.
Drainage schemes for salinity management are aimed at lowering the shallow groundwater to help increase production and reduce ecological risks. Once the groundwater levels are lowered to desired agro-ecological thresholds, the drainage scheme’s operation needs to be optimised according to the spatio–temporal variation in groundwater dynamics. Groundwater systems can be modelled if their behaviour is fully known and understood but a key difficulty in optimisation is dealing with non-linear and non-unique spatio-temporal problems. Such problems can be optimised using genetic algorithms (GA) aimed at finding near optimal solutions to highly non-linear optimisation problems. The major advantages of GAs are their broad applicability, flexibility and their ability to find solutions with relatively modest computational requirements. A surface water/groundwater interaction model has been developed in conjunction with GA based spatio-temporal optimisation of pumping operation of a subsurface drainage scheme. The aim has been to achieve a similar or better than on-going level of service both in space and time domains. The Wakool Tullakool Subsurface Drainage Scheme in the Murray Irrigation Area, Australia is discussed to illustrate the modelling process. The model results are being used to plan the cost-effective operation of the tubewells to control water logging and salinisation.  相似文献   
102.
Salem-Attur shear zone in the Southern Granulite Terrane demarcates the tectonic boundary between Archaean granulites of Dharwar craton and the Palaeoproterozoic granulites of Salem area. The shear zone marks a low angle thrust which has been steepened at places due to late stage folding. Static recrystallisation during late stage folding has removed the strain marker of mylonites to large extent. However, in a few places S-C angle and porphyroclasts are preserved and have been used to compute the strain. The strain shows apparent flattening by simple shear deformation with 35 % volume loss. A minimum displacement along the thrust has been computed to be 2.7 km. The strain k values increases with r suggesting the strain approaching towards prolate field with increase in strain intensity. The above study suggests the Salem-Attur shear zone is a thrust with low to moderate deformation and volume loss.  相似文献   
103.
The role of El Niño/Southern Oscillation (ENSO) and the mechanism through which ENSO influences the precipitation variability over northwest India and the adjoining (NWIA) region is well documented. In this study, the relative role of North Atlantic Oscillation (NAO)/Arctic Oscillation (AO) and ENSO in modulating the Asian jet stream in the Northern Hemisphere winter and their relative impact on the precipitation variability over the region have been estimated through analysis of observed data. It is seen that interannual variations of NWIA precipitation are largely influenced by ENSO. An empirical orthogonal function (EOF) analysis has been carried out to understand dominant modes of interannual variability of zonal wind at 200 hPa of the Northern Hemisphere. The EOF-1 pattern in the tropical region is similar to that of an ENSO pattern, and the principal component (PC) time series corresponds to the ENSO time series. The EOF-2 spatial pattern resembles that of NAO/AO with correlation of PC time series with AO and NAO being 0.74 and 0.62, respectively. The precipitation anomaly time series over the region of interest has marginally higher correlation with the PC-2 time series as compared to that of PC-1. Regression analysis of precipitation and circulation parameters indicates a larger contribution of the second mode to variability of winds and precipitation over the NWIA. Moisture transport from the Arabian Sea during the active phase of NAO/AO and the presence of a cyclonic anomaly lead to higher precipitation over the NWIA region.  相似文献   
104.
The present study evaluates firstly the ability of the FAO-56 methodology, based on the two-step approach “reference evapotranspiration (ET0)—crop coefficient (K c),” to accurately determine the actual evapotranspiration (ET) of irrigated crops and proposes, secondly, the alternative approaches for improving this determination. The FAO-56 methodology is supported by two hypotheses: (1) ET0 represents all effects of weather and (2) K c varies predominately with specific crop characteristics and only marginally with climate, which enables the transfer of K c standard values among locations and climates. On the base of the theoretical analysis and experimental observations, a critical examination of the previous hypotheses demonstrates that they are not verified by reality. The first hypothesis is not verified for two reasons: (a) The formulation adapted by the Penman–Monteith equation and proposed in FAO-56 methodology for calculating ET0 uses climatic variables determined at a 24-h average scale. However, in principle it is only valid in permanent regime, in other words at least on an hourly scale. (b) The FAO-56-proposed formulation attributes a constant value to the canopy resistance of the reference surface; but in reality, this resistance is variable in relation to the climatic variables. The second hypothesis, concerning the two-step approach, is also not verified because the values of K c largely vary in relation to climatic variables (radiation, air vapour pressure deficit and wind speed). This fact does not support the possibility of the transferability of K c values into locations where the local conditions deviate from the conditions where the adjusted values of K c were determined. The weakness of the ET estimation, observed on several crops cultivated in the Mediterranean region, through the application of the FAO-56 methodology, is the result of errors accumulation, associated with that affects the determination of either ET0 or K c. The present study underlines the advantage of using a one-step approach in the calculation of ET, since it is based on fewer computation steps and, consequently, on fewer error sources than the two-step model. Two models adopting this approach are proposed and validated, one of which can be considered as operational, i.e. it only needs standard meteorological data as input. The use of these models enables an improvement of the ET estimation. This objective is a key component of any strategy to improve agricultural water management in Mediterranean region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号