首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29628篇
  免费   496篇
  国内免费   225篇
测绘学   739篇
大气科学   2264篇
地球物理   5773篇
地质学   10887篇
海洋学   2567篇
天文学   6299篇
综合类   65篇
自然地理   1755篇
  2021年   273篇
  2020年   298篇
  2019年   305篇
  2018年   729篇
  2017年   732篇
  2016年   843篇
  2015年   468篇
  2014年   804篇
  2013年   1560篇
  2012年   925篇
  2011年   1231篇
  2010年   1056篇
  2009年   1370篇
  2008年   1192篇
  2007年   1186篇
  2006年   1166篇
  2005年   843篇
  2004年   843篇
  2003年   768篇
  2002年   768篇
  2001年   714篇
  2000年   701篇
  1999年   550篇
  1998年   518篇
  1997年   598篇
  1996年   468篇
  1995年   473篇
  1994年   471篇
  1993年   381篇
  1992年   387篇
  1991年   358篇
  1990年   373篇
  1989年   344篇
  1988年   345篇
  1987年   369篇
  1986年   325篇
  1985年   424篇
  1984年   414篇
  1983年   445篇
  1982年   415篇
  1981年   365篇
  1980年   402篇
  1979年   324篇
  1978年   302篇
  1977年   294篇
  1976年   266篇
  1975年   264篇
  1974年   269篇
  1973年   254篇
  1971年   173篇
排序方式: 共有10000条查询结果,搜索用时 531 毫秒
821.
The Late Cretaceous–Cenozoic evolution of the eastern North Sea region is investigated by 3D thermo-mechanical modelling. The model quantifies the integrated effects on basin evolution of large-scale lithospheric processes, rheology, strength heterogeneities, tectonics, eustasy, sedimentation and erosion.

The evolution of the area is influenced by a number of factors: (1) thermal subsidence centred in the central North Sea providing accommodation space for thick sediment deposits; (2) 250-m eustatic fall from the Late Cretaceous to present, which causes exhumation of the North Sea Basin margins; (3) varying sediment supply; (4) isostatic adjustments following erosion and sedimentation; (5) Late Cretaceous–early Cenozoic Alpine compressional phases causing tectonic inversion of the Sorgenfrei–Tornquist Zone (STZ) and other weak zones.

The stress field and the lateral variations in lithospheric strength control lithospheric deformation under compression. The lithosphere is relatively weak in areas where Moho is deep and the upper mantle warm and weak. In these areas the lithosphere is thickened during compression producing surface uplift and erosion (e.g., at the Ringkøbing–Fyn High and in the southern part of Sweden). Observed late Cretaceous–early Cenozoic shallow water depths at the Ringkøbing–Fyn High as well as Cenozoic surface uplift in southern Sweden (the South Swedish Dome (SSD)) are explained by this mechanism.

The STZ is a prominent crustal structural weakness zone. Under compression, this zone is inverted and its surface uplifted and eroded. Contemporaneously, marginal depositional troughs develop. Post-compressional relaxation causes a regional uplift of this zone.

The model predicts sediment distributions and paleo-water depths in accordance with observations. Sediment truncation and exhumation at the North Sea Basin margins are explained by fall in global sea level, isostatic adjustments to exhumation, and uplift of the inverted STZ. This underlines the importance of the mechanisms dealt with in this paper for the evolution of intra-cratonic sedimentary basins.  相似文献   

822.
In this paper, MSMR geophysical products like Integrated Water Vapour (IWV), Ocean Surface Wind Speed (OWS) and Cloud Liquid Water (CLW) in different grids of 50, 75 and 150 kms are compared with similar products available from other satellites like DMSP-SSM/I and TRMMTMI. MSMR derived IWV, OWS and CLW compare well with SSM/I and TMI finished products. Comparison of MSMR derived CLW with that derived from TMI and SSM/I is relatively in less agreement. This is possibly due to the use of 37 GHz in SSM/I and TMI that is highly sensitive to CLW, while 37 GHz channels are not available on MSMR. Monthly comparison of MSMR geophysical products with those from TMI is all carried out for climatological purpose. The monthly comparisons were much better compared to instantaneous comparisons. In this paper, details of the data analysis and comparison results are presented. The usefulness of the MSMR vis-à-vis other sensors is also discussed.  相似文献   
823.
Berman’s (1983) activity-composition model for CaO-MgO-Al2O3-SiO2 liquids is used to calculate the change in bulk chemical and isotopic composition during simultaneous cooling, evaporation, and crystallization of droplets having the compositions of reasonable condensate precursors of Types A and B refractory inclusions in CV3 chondrites. The degree of evaporation of MgO and SiO2, calculated to be faithfully recorded in chemical and isotopic zoning of individual melilite crystals, is directly proportional to evaporation rate, which is a sensitive function of PH2, and inversely proportional to the droplet radius and cooling rate. When the precursors are partially melted in pure hydrogen at peak temperatures in the vicinity of the initial crystallization temperature of melilite, their bulk chemical compositions evolve into the composition fields of refractory inclusions, mass-fractionated isotopic compositions of Mg, Si, and O are produced that are in the range of the isotopic compositions of natural inclusions, and melilite zoning profiles result that are similar to those observed in real inclusions. For droplets of radius 0.25 cm evaporating at PH2 = 10−6 bar, precursors containing 8 to 13 wt.% MgO and 20 to 23% SiO2 evolve into objects similar to compact Type A inclusions at cooling rates of 2 to 12 K/h, depending on the precise starting composition. Precursors containing 13 to 14 wt.% MgO and 23 to 26% SiO2 evolve into objects with the characteristics of Type B1 inclusions at cooling rates of 1.5 to 3 K/h. The relatively SiO2-poor members of the Type B2 group can be produced from precursors containing 14 to 16 wt.% MgO and 27 to 33% SiO2 at cooling rates of <1 K/h. Type B2’s containing 27 to 35 wt.% SiO2 and <12% MgO require precursors with higher SiO2/MgO ratios at MgO > 15% than are found on any condensation curve. The characteristics of fluffy Type A inclusions, including their reversely zoned melilite, can only be understood in the context of this model if they contain relict melilite.  相似文献   
824.
Liquidus phase relationships have been determined for a high-MgO basalt (STV301: MgO=12.5 wt%, Ni=250 ppm, Cr=728 ppm) from Black Point, St Vincent (Lesser Antilles arc). Piston-cylinder experiments were conducted between 7.5 and 20 kbar under both hydrous and oxidizing conditions. AuPd capsules were used as containers. Compositions of supraliquidus glasses and mass-balance calculations show that Fe loss is < 10% in the majority of experiments. Two series of water concentrations in melt were investigated: (i) 1.5 wt% and (ii) 4.5 wt% H2O, as determined by SIMS analyses on quenched glasses and with the by difference technique. The Fe3+/Fe2+ partitioning between Cr-Al spinel and melt and olivine-spinel equilibria show that oxidizing fO2 were imposed (NNO + 1.5 for the 1.5 wt% H2O series, NNO + 2.3 for the 4.5 wt% H2O series). For both series of water concentrations, the liquid is multiply-saturated with a spinel lherzolite phase assemblage on its liquidus, at 1235°C, 11.5 kbar (1.5 wt% H2O) and 1185°C, 16 kbar (4.5 wt% H2O). Liquidus phases are homogeneous and comparable to typical mantle compositions. Mineral-melt partition coefficients are generally identical to values under anhydrous conditions. The modal proportion cpx/opx on the liquidus decreases from the 1.5 wt% to the 4.5 wt% H2O series. The experimental data are consistent with STV301 being a product of partial melting of lherzolitic mantle. Conditions of multiple saturation progressively evolve toward lower temperatures and higher pressures with increasing melt H2O concentration. Phase equilibria constraints, i.e., the necessity of preserving the mantle signature seen in high-MgO and picritic arc basalts, and glass inclusion data suggest that STV301 was extracted relatively dry (∼ 2 wt% H2O) from its mantle source. However, not all primary arc basalts are extracted under similarly dry conditions because more hydrous melts will crystallize during ascent and will not be present unmodified at the surface. From degrees of melting calculated from experiments on KLB-1, extraction of a 12.5 wt% MgO melt with ∼ 2 wt% H2O would require a H2O concentration of 0.3 wt% in the sub-arc mantle. For mantle sources fluxed with a slab-derived hydrous component, extracted melts may contain up to ∼ 5.5 wt% H2O.  相似文献   
825.
The thermal expansion of supercooled liquids in the haplobasaltic (anorthite-diopside) system have been determined via methods of container-based dilatometry. The expansivity data obtained in this study agree well with estimates provided by previous dilatometric determinations in the system that have relied on alternative experimental strategies. The data have been combined with high-temperature, superliquidus determinations of melt density to obtain expressions for the volume-temperature (V-T) relationships of liquids in the anorthite-diopside system. The V-T data clearly indicate a nonlinear temperature dependence of volume for all melts investigated. The variation is most striking for diopside, where the coefficient of volume thermal expansion decreases ∼56% from temperatures near the glass transition to superliquidus temperatures. With increasing anorthite content, the degree of variation appears to decrease. An42Di58 exhibits a decrease of 39% of its coefficient of thermal expansion and An98Di02 of 33%, respectively. The expansivities obtained in this study cannot be reproduced by means of published models that are based on linear V-T relationships. They require instead a reanalysis of existing pressure-V-T equations of state models for silicate melts.  相似文献   
826.
Adsorption, complexation, and dissolution reactions strongly influenced the transport of metal ions complexed with ethylenediaminetetraacetic acid (EDTA) in a predominantly quartz-sand aquifer during two tracer tests conducted under mildly reducing conditions at pH 5.8 to 6.1. In tracer test M89, EDTA complexes of zinc (Zn) and nickel (Ni), along with excess free EDTA, were injected such that the lower portion of the tracer cloud traveled through a region with adsorbed manganese (Mn) and the upper portion of the tracer cloud traveled through a region with adsorbed Zn. In tracer test S89, Ni- and Zn-EDTA complexes, along with excess EDTA complexed with calcium (Ca), were injected into a region with adsorbed Mn. The only discernable chemical reaction between Ni-EDTA and the sediments was a small degree of reversible adsorption leading to minor retardation. In the absence of adsorbed Zn, the injected Zn was displaced from EDTA complexes by iron(III) [Fe(III)] dissolved from the sediments. Displacement of Zn by Fe(III) on EDTA became increasingly thermodynamically favorable with decreasing total EDTA concentration. The reaction was slow compared to the time-scale of transport. Free EDTA rapidly dissolved aluminum (Al) from the sediments, which was subsequently displaced slowly by Fe. In the portion of tracer cloud M89 that traveled through the region contaminated with adsorbed Zn, little displacement of Zn complexed with EDTA was observed, and Al was rapidly displaced from EDTA by Zn desorbed from the sediments, in agreement with equilibrium calculations. In tracer test S89, desorption of Mn dominated over the more thermodynamically favorable dissolution of Al oxyhydroxides. Comparison with results from M89 suggests that dissolution of Al oxyhydroxides in coatings on these sediment grains by Ca-EDTA was rate-limited whereas that by free EDTA reached equilibrium on the time-scale of transport. Rates of desorption are much faster than rates of dissolution of Fe oxyhydroxides from sediment-grain surfaces and, therefore, adsorbed metal ions can strongly influence the speciation of ligands like EDTA in soils and sediments, especially over small temporal and spatial scales.  相似文献   
827.
Uranium co-precipitation with iron oxide minerals   总被引:2,自引:0,他引:2  
In oxidizing environments, the toxic and radioactive element uranium (U) is most soluble and mobile in the hexavalent oxidation state. Sorption of U(VI) on Fe-oxides minerals (such as hematite [α-Fe2O3] and goethite [α-FeOOH]) and occlusion of U(VI) by Fe-oxide coatings are processes that can retard U transport in environments. In aged U-contaminated geologic materials, the transport and the biological availability of U toward reduction may be limited by coprecipitation with Fe-oxide minerals. These processes also affect the biological availability of U(VI) species toward reduction and precipitation as the less soluble U(IV) species by metal-reducing bacteria.To examine the dynamics of interactions between U(VI) and Fe oxides during crystallization, Fe-oxide phases (containing 0.5 to 5.4 mol% U/(U + Fe)) were synthesized by means of solutions of U(VI) and Fe(III). Wet chemical (digestions and chemical extractions) and spectroscopic techniques were used to characterize the synthesized Fe oxide coprecipitates after rinsing in deionized water. Leaching the high mol% U solids with concentrated carbonate solution (for sorbed and solid-phase U(VI) species) typically removed most of the U, leaving, on average, about 0.6 mol% U. Oxalate leaching of solids with low mol% U contents (about 1 mol% U or less) indicated that almost all of the Fe in these solids was crystalline and that most of the U was associated with these crystalline Fe oxides. X-ray diffraction and Fourier-transform infrared (FT-IR) spectroscopic studies indicate that hematite formation is preferred over that of goethite when the amount of U in the Fe-oxides exceeds 1 mol% U (∼4 wt% U). FT-IR and room temperature continuous wave luminescence spectroscopic studies with unleached U/Fe solids indicate a relationship between the mol% U in the Fe oxide and the intensity or existence of the spectra features that can be assigned to UO22+ species (such as the IR asymmetric υ3 stretch for O = U = O for uranyl). These spectral features were undetectable in carbonate- or oxalate-leached solids, suggesting solid phase and sorbed U(VI)O22+ species are extracted by the leach solutions. Uranium L3-edge x-ray absorption spectroscopic (XAFS) analyses of the unleached U-Fe oxide solids with less than 1 mol% U reveal that U(VI) exists with four O atoms at radial distances of 2.19 and 2.36 Å and second shell Fe at a radial distance at 3.19 Å.Because of the large ionic radius of UO22+ (∼1.8 Å) relative to that of Fe3+ (0.65 Å), the UO22+ ion is unlikely to be incorporated in the place of Fe in Fe(III)-oxide structures. Solid-phase U(VI) can exist as the uranyl [U(VI)O22+] species with two axial U-O double bonds and four or more equatorial U-O bonds or as the uranate species (such as γ-UO3) without axial U-O bonds. Our findings indicate U6+ (with ionic radii of 0.72 to 0.8 Å, depending on the coordination environment) is incorporated in the Fe oxides as uranate (without axial O atoms) until a point of saturation is reached. Beyond this excess in U concentration, precipitating U(VI) forms discrete crystalline uranyl phases that resemble the uranyl oxide hydrate schoepite [UO2(OH)2·2H2O]. Molecular modeling studies reveal that U6+ species could bond with O atoms from distorted Fe octahedra in the hematite structure with an environment that is consistent with the results of the XAFS. The results provide compelling evidence of U incorporation within the hematite structure.  相似文献   
828.
Magmas erupted at mid-ocean ridges (MORB) result from decompression melting of upwelling mantle. However, the mechanism of melt transport from the source region to the surface is poorly understood. It is debated whether melt is transported through melt-filled conduits or cracks on short time scales (<∼ 103 yrs), or whether there is a significant component of slow, equilibrium porous flow on much longer time scales (>∼ 103-104 yrs). Radiogenic excess 226Ra in MORB indicates that melt is transported from the melting region on time scales less than the half life of 226Ra (∼1600 yrs), and has been used to argue for fast melt transport from the base of the melting column. However, excess 226Ra can be generated at the bottom of the melt column, during the onset of melting, and at the top of the melt column by reactive porous flow. Determining the depth at which 226Ra is generated is critical to interpreting the rate and mechanism of magma migration. A recent compilation of high quality U-series isotope data show that in many young basalts, 226Ra excess in MORB is negatively correlated with 230Th excess. The data suggest that 226Ra excess is generated independently of 230Th excess, and cannot be explained by “dynamic” or fractional melting, where observed radiogenic excesses are all generated at the base of the melt column. One explanation is that the negative correlation of activity ratios is a result of mixing of slow moving melt that has travelled through reactive, low-porosity pathways and relatively fast moving melt that has been transported in unreactive high-porosity channels. We investigate this possibility by calculating U-series disequilibria in a melting column in which high-porosity, unreactive channels form within a low-porosity matrix that is undergoing melting. The results show that the negative correlation of 226Ra and 230Th excesses observed in MORB can be produced if ∼60% of the total melt flux travels through the low-porosity matrix. This melt maintains 226Ra excesses via chromatographic fractionation of Ra and Th during equilibrium transport. Melt that travels through the unreactive, high-porosity channels is not able to maintain significant 226Ra excesses because Ra and Th are not fractionated from each other during transport and the transport time for melt in the channels to reach the top of the melt column is longer than the time scale for 226Ra excesses to decay. Mixing of melt from the high porosity channels with melt from the low-porosity matrix at the top of the melting column can produce a negative correlation of 226Ra and 230Th excesses with the slope and magnitude observed in MORB. This transport process can also account for other aspects of the geochemistry of MORB, such as correlations between La/Yb, αSm/Nd, and Th/U and 226Ra and 230Th excess.  相似文献   
829.
830.
In this paper we employ mixed finite elements and numerically study an integrated two-dimensional model of fluid flow and compaction in a sedimentary basin. This model describes a single phase incompressible flow in a two-dimensional section of a sedimentary basin with vertical compaction. At each time step, an iterative algorithm is used to solve this model. The determination of the grid movement is based on the mass conservation and movement of sediments in the basin, while the mixed method is utilized to solve the fluid flow over the moving grid. Numerical experiments are presented to verify this iterative algorithm and show representative solutions for the model under consideration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号