首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4855篇
  免费   160篇
  国内免费   53篇
测绘学   121篇
大气科学   422篇
地球物理   1016篇
地质学   1619篇
海洋学   443篇
天文学   898篇
综合类   11篇
自然地理   538篇
  2021年   50篇
  2020年   56篇
  2019年   76篇
  2018年   78篇
  2017年   82篇
  2016年   107篇
  2015年   116篇
  2014年   110篇
  2013年   267篇
  2012年   153篇
  2011年   228篇
  2010年   195篇
  2009年   284篇
  2008年   203篇
  2007年   188篇
  2006年   170篇
  2005年   158篇
  2004年   170篇
  2003年   168篇
  2002年   161篇
  2001年   99篇
  2000年   107篇
  1999年   100篇
  1998年   98篇
  1997年   61篇
  1996年   79篇
  1995年   67篇
  1994年   62篇
  1993年   58篇
  1992年   52篇
  1991年   67篇
  1990年   54篇
  1989年   51篇
  1988年   47篇
  1987年   67篇
  1986年   49篇
  1985年   61篇
  1984年   81篇
  1983年   62篇
  1982年   57篇
  1981年   77篇
  1980年   65篇
  1979年   53篇
  1978年   69篇
  1977年   53篇
  1976年   56篇
  1975年   38篇
  1974年   40篇
  1973年   37篇
  1971年   35篇
排序方式: 共有5068条查询结果,搜索用时 15 毫秒
241.
Reactivation of pre‐existing intra‐basement structures can influence the evolution of rift basins, yet the detailed kinematic relationship between these structures and overlying rift‐related faults remains poorly understood. Understanding the kinematic as well as geometric relationship between intra‐basement structures and rift‐related fault networks is important, with the extension direction in many rifted provinces typically thought to lie normal to fault strike. We here investigate this problem using a borehole‐constrained, 3D seismic reflection dataset from the Taranaki Basin, offshore New Zealand. Excellent imaging of intra‐basement structures and a relatively weakly deformed, stratigraphically simple sedimentary cover allow us to: (a) identify a range of interaction styles between intra‐basement structures and overlying, Plio‐Pleistocene rift‐related normal faults; and (b) examine the cover fault kinematics associated with each interaction style. Some of the normal faults parallel and are physically connected to intra‐basement reflections, which are interpreted as mylonitic reverse faults formed during Mesozoic subduction and basement terrane accretion. These geometric relationships indicate pre‐existing intra‐basement structures locally controlled the position and attitude of Plio‐Pleistocene rift‐related normal faults. However, through detailed 3D kinematic analysis of selected normal faults, we show that: (a) normal faults only nucleated above intra‐basement structures that experienced late Miocene compressional reactivation, (b) despite playing an important role during subsequent rifting, intra‐basement structures have not been significantly extensionally reactivated, and (c) preferential nucleation and propagation of normal faults within late Miocene reverse faults and folds appears to be the key genetic relationship between contractionally reactivated intra‐basement structures and rift‐related normal faults. Our analysis shows that km‐scale, intra‐basement structures can control the nucleation and development of newly formed, rift‐related normal faults, most likely due to a local perturbation of the regional stress field. Because of this, simply inverting fault strike for causal extension direction may be incorrect, especially in provinces where pre‐existing, intra‐basement structures occur. We also show that a detailed kinematic analysis is key to deciphering the temporal as well as simply the spatial or geometric relationship between structures developed at multiple structural levels.  相似文献   
242.
The Karoo Basin covers much of South Africa and is an area of prospective shale gas exploration, with the Whitehill Formation the target shale unit. However, the sedimentary succession, including the Whitehill, has been intruded by a series of sills and dykes associated with the Karoo Large Igneous Province (~183 Ma), which are expected to have modified the thermal history of the basin dramatically. Here, we investigate a secondary effect of these intrusions: a series of hydrothermal vent complexes, or breccia pipes, focusing on using O, H, and C isotopes to constrain the origin and evolution of fluids produced during the intrusion of basaltic sills. A cluster of breccia pipes have been eroded down to the level of the Ecca Group at Luiperdskop on the western edge of the Karoo basin; a small isolated pipe of similar appearance crops out 13 km to the east. The Luiperdskop pipes are underlain by a Karoo dolerite sill that is assumed to provide the heat driving fluidization. The pipes consist of fine‐grained matrix and about 8% clasts, on average, of mostly sedimentary material; occasional large rafts of quartzite and dolerite are also present. The presence of clasts apparently from the Dwyka Group is consistent with the depth of formation of the pipes being at, or near, the base of the Karoo Supergroup, between 400 and 850 m below present surface. The presence of chlorite as the dominant hydrous mineral is consistent with an emplacement temperature between 300 and 350°C. The major and trace element, and O‐ and H‐isotope composition of the Tankwa breccias is homogenous, consistent with them being derived from the same source. The δ18O values (vsVSMOW) of the breccias are relatively uniform (7.1‰–8.7‰), and are similar to that of the country rock shale, and both are lower than expected for shale. The water content of the breccia is between 2.7 and 3.1 wt.% and the δD values range from ?109‰ to ?144‰. Calcite in vesicles has δ13C and δ18O (VSMOW) values of ?4.2‰ and 24.0‰, respectively. The low δD value of the breccia rocks does not appear to be due to the presence of methane in the fluid. Instead, it is proposed that low δD and δ18O values are the result of the fluid being derived from the breakdown of clay minerals that formed and were deposited at a time of cold climate at ~290 Ma.  相似文献   
243.
Marine Geophysical Research - Time–depth relationships (TDR) are required for correlating geological information from drill sites with seismic reflection profiles. Conventional...  相似文献   
244.
The abundances of highly siderophile elements (HSE; including Re, Os, Ir, Ru, Pt, and Pd) and 187Re‐187Os isotopic systematics were determined for two fragments from ungrouped achondrite NWA 7325. Rhenium‐Os systematics are consistent with closed‐system behavior since formation or soon after. The abundances of the HSE were therefore largely unaffected by late‐stage secondary processes such as shock or terrestrial weathering. As an olivine gabbro cumulate, this meteorite has a bulk composition consistent with derivation from a body that produced a core, mantle, and crust. Also consistent with derivation from a body that produced a core, both fragments of NWA 7325 have HSE abundances that are highly depleted compared to bulk chondrites. One fragment has ~0.002× CI chondrite Ir and relative HSE abundances similar to bulk chondrites. The other fragment has ~0.0002× CI chondrite Ir and relative HSE abundances that are fractionated compared to bulk chondrites. The chondritic relative HSE abundances of the fragment characterized by higher HSE abundances most likely reflect the addition of exogenous chondritic material during or after crystallization by surface impacts. The HSE in the other fragment is likely more representative of the parent body crust. One formation model that can broadly account for the HSE abundances in this fragment is multiple episodes of low‐pressure metal‐silicate equilibration, followed by limited late accretion and mantle homogenization. Given the different HSE compositions of the two adjoining fragments, this meteorite provides an example of the overprint of global processes (differentiation and late accretion) by localized impact contamination.  相似文献   
245.
Northwest Africa (NWA) 6112, Miller Range (MIL) 090206 (plus its pairs: MIL 090340 and MIL 090405), and Divnoe are olivine‐rich ungrouped achondrites. We investigated and compared their petrography, mineralogy, and olivine fabrics. We additionally measured the oxygen isotopic compositions of NWA 6112. They show similar petrography, mineralogy, and oxygen isotopic compositions and we concluded that these five meteorites are brachinite clan meteorites. We found that NWA 6112 and Divnoe had a c axis concentration pattern of olivine fabrics using electron backscattered diffraction (EBSD). NWA 6112 and Divnoe are suggested to have been exposed to magmatic melt flows during their crystallization on their parent body. On the other hand, the three MIL meteorites have b axis concentration patterns of olivine fabrics. This indicates that the three MIL meteorites may be cumulates where compaction of olivine grains was dominant. Alternatively, they formed as residues and were exposed to olivine compaction. The presence of two different olivine fabric patterns implies that the parent body(s) of brachinite clan meteorites experienced diverse igneous processes.  相似文献   
246.
We studied a data set of 28 well‐preserved lunar craters in the transitional (simple‐to‐complex) regime with the aim of investigating the underlying cause(s) for morphological differences of these craters in mare versus highland terrains. These transitional craters range from 15 to 42 km in diameter, demonstrating that the transition from simple to complex craters is not abrupt and occurs over a broad diameter range. We examined and measured the following crater attributes: depth (d), diameter (D), floor diameter (Df), rim height (h), and wall width (w), as well as the number and onset of terraces and rock slides. The number of terraces increases with increasing crater size and, in general, mare craters possess more terraces than highland craters of the same diameter. There are also clear differences in the d/D ratio of mare versus highland craters, with transitional craters in mare targets being noticeably shallower than similarly sized highland craters. We propose that layering in mare targets is a major driver for these differences. Layering provides pre‐existing planes of weakness that facilitate crater collapse, thus explaining the overall shallower depths of mare craters and the onset of crater collapse (i.e., the transition from simple to complex crater morphology) at smaller diameters as compared to highland craters. This suggests that layering and its interplay with target strength and porosity may play a more significant role than previously considered.  相似文献   
247.
Cartography   总被引:1,自引:1,他引:0  
  相似文献   
248.
249.
The c. 1·2 km long, up to c. 25 m high ridge east of the almost north-south aligned Fan Hir scarp, Mynydd Du, South Wales has been regarded as a remarkable protalus rampart formed in the Loch Lomond Stadial (c. 11–10000 years BP ). New data are presented which indicate that it is a moraine. The main points supporting this glacigenic origin are: its curved plan form at the lower, southern end; its scale and the ample depth for snow to glacier ice transformation; the presence of subsidiary ridges interpreted as recessional moraines; the exceptional rate of rockwall retreat required if it were a protalus rampart; and, most importantly, the presence in the ridge of matrix-supported abraded clasts, up to 20% of which are striated. Useful criteria for differentiating moraines and protalus ramparts are thereby proposed and a sound basis is provided for palaeoclimatic reconstruction. Palaeoclimatic inferences imply that the glacier owed its existence to the combined effect of a mean July temperature of c. 8·5°C and topographically enhanced accumulation, nearly half of which was from wind-blown snow.  相似文献   
250.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号