首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   532篇
  免费   26篇
  国内免费   14篇
测绘学   34篇
大气科学   34篇
地球物理   130篇
地质学   291篇
海洋学   19篇
天文学   38篇
综合类   4篇
自然地理   22篇
  2023年   3篇
  2022年   12篇
  2021年   29篇
  2020年   26篇
  2019年   24篇
  2018年   52篇
  2017年   42篇
  2016年   71篇
  2015年   33篇
  2014年   49篇
  2013年   60篇
  2012年   42篇
  2011年   41篇
  2010年   26篇
  2009年   20篇
  2008年   9篇
  2007年   6篇
  2006年   6篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1998年   3篇
  1997年   4篇
  1991年   1篇
  1975年   3篇
排序方式: 共有572条查询结果,搜索用时 218 毫秒
521.
In this study, a simplified analytical closed‐form solution, considering plane strain and axial symmetry conditions, for analysis of a circular pressure tunnel excavated underwater table, is developed. The method accounts for the seepage forces with the steady‐state flow and is based on the generalized effective stress law. To examine the effect of pore pressure variations and also the boundary conditions at the ground surface, the formulations are derived for different directions around the tunnel. The proposed method can be applied for analysis and design of pressure tunnels. Illustrative examples are given to demonstrate the performance of the proposed solution and also to examine the effect of seepage forces on the stability of tunnels. The simplified analytical solution derived in this study is compared with numerical analyses. It is concluded that the classic solutions (Lame's thick‐walled solution), considering the internal pressure as a mechanical load applied to the tunnel surface, are not applicable to pervious media and can result in an unsafe design. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
522.
The burial age of an alluvially deposited cobble pavement at the Tapada do Montinho archaeological site (east‐central Portugal) is investigated using optically stimulated luminescence (OSL) dating. Measurements on the cobbles (quartzite clasts) were carried out on intact slices and large aliquots (~8 mm) of quartz grains (63–300 μm), both recovered from the outer 1.5‐mm surface of the cobbles. The recycling ratio, recuperation and dose‐recovery tests show that the single‐aliquot regenerative‐dose (SAR) protocol is applicable to both rock slices and quartz grains; both have similar luminescence characteristics. The variation in the natural OSL signal with depth below the cobble surface using intact slices from two different cobbles shows that both were bleached to a depth of at least ~2 mm before deposition. A model of the variation of dose with depth fitted to data from one of the cobbles gives a burial age of ~19 ka and also predicts the dose‐depth variation at the time of deposition. Ages based on rock slices suggest that one cobble surface, and the inner parts of two other cobbles experienced a resetting event at ~45 ka, consistent with the age control. However, the surfaces of the other cobbles all record light‐exposure events in the range 26 to 14 ka, suggesting that some of the cobbles were exposed to daylight perhaps more than once in this period. Given the shallow burial depth and unexpectedly young ages of the surrounding and overlying finer‐grained sediment, it is suggested that phases of light exposure following surficial erosion are probably responsible for this underestimate. Nevertheless, it is remarkable that we can identify and quantify four events (two light exposures of different durations and two sequential burial periods) in the dose record contained within a single clast, and this suggests that the luminescence dating of rock surfaces may prove, in the future, to be at least as important as sand/silt sediment dating.  相似文献   
523.
This paper presents a non‐linear coupled finite element–boundary element approach for the prediction of free field vibrations due to vibratory and impact pile driving. Both the non‐linear constitutive behavior of the soil in the vicinity of the pile and the dynamic interaction between the pile and the soil are accounted for. A subdomain approach is used, defining a generalized structure consisting of the pile and a bounded region of soil around the pile, and an unbounded exterior linear soil domain. The soil around the pile may exhibit non‐linear constitutive behavior and is modelled with a time‐domain finite element method. The dynamic stiffness matrix of the exterior unbounded soil domain is calculated using a boundary element formulation in the frequency domain based on a limited number of modes defined on the interface between the generalized structure and the unbounded soil. The soil–structure interaction forces are evaluated as a convolution of the displacement history and the soil flexibility matrices, which are obtained by an inverse Fourier transformation from the frequency to the time domain. This results in a hybrid frequency–time domain formulation of the non‐linear dynamic soil–structure interaction problem, which is solved in the time domain using Newmark's time integration method; the interaction force time history is evaluated using the θ‐scheme in order to obtain stable solutions. The proposed hybrid formulation is validated for linear problems of vibratory and impact pile driving, showing very good agreement with the results obtained with a frequency‐domain solution. Linear predictions, however, overestimate the free field peak particle velocities as observed in reported field experiments during vibratory and impact pile driving at comparable levels of the transferred energy. This is mainly due to energy dissipation related to plastic deformations in the soil around the pile. Ground vibrations due to vibratory and impact pile driving are, therefore, also computed with a non‐linear model where the soil is modelled as an isotropic elastic, perfectly plastic solid, which yields according to the Drucker–Prager failure criterion. This results in lower predicted free field vibrations with respect to linear predictions, which are also in much better agreement with experimental results recorded during vibratory and impact pile driving. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
524.
The modified Kodomtsev-Petviashvili-Burger (mKP-Burger) and Kodomtsev-Petviashvili-Burger equations are derived in strongly coupled dusty plasmas containing iso-nonthermal ions; Boltzmann distributed electrons and variable dust charge. We use reductive perturbation method and discuss on solitary waves and shock waves solutions of these equations.  相似文献   
525.
The conventional pseudo-dynamic(CPD) and modified pseudo-dynamic(MPD) methods are invoked to obtain the seismic bearing capacity of strip foundations using the limit equilibrium method, with a two-wedge failure mechanism.A spectral version of the conventional pseudo-dynamic method(SPD) is also invoked by considering the ground motion amplification factor, to be a function of the non-dimensional frequency λ/B and soil damping. Numeric analyses show that bearing capacity results obtained by the MPD and SPD methods are generally consistent. Both experience the same general reduction in bearing capacity with the increase of λ/B, with successive ups and downs corresponding to soil′s natural frequencies. For 5λ/B10, SPD and MPD results fluctuated between falling above and below CPD results. For λ/B2.5, SPD and MPD results were consistent with attenuation of the shear wave, while for 10λ/B, amplification was exhibited. Results obtained by the CPD method monotonically decrease, due to the fact that CPD fails to inherently consider site effects and damping, and instead and relies on a single factor to consider the ground motion amplification.  相似文献   
526.
Rainfed agriculture plays an important role in the agricultural production of the southern and western provinces of Iran. In rainfed agriculture, the adequacy of annual precipitation is considered as an important factor for dryland field and supplemental irrigation management. Different methods can be used for predicting the annual precipitation based on climatic and non-climatic inputs. Among which artificial neural networks (ANN) is one of these methods. The purpose of this research was to predict the annual precipitation amount (millimeters) in the west, southwest, and south of Islamic Republic of Iran with the total area of 394,259?km2, by applying non-climatic inputs according to the long-time average precipitation in each station (millimeters), 47.5?mm precipitation since the first of autumn (day), t 47.5, and other effective parameters like coordinate and altitude of the stations, by using the artificial neural networks. In order to intelligently estimate the annual amount of precipitation in the study regions (ten provinces), feedforward backpropagation artificial neural network model has been used (method I). To predict the annual precipitation amount more accurately, the region under study was divided into three sub-regions, according to the precipitation mapping, and for each sub-region, the neural networks were developed using t 47.5 and long-time average annual precipitation in each station (method II). It is concluded that neural networks did not significantly increase the prediction accuracy in the study area compared with multiple regression model proposed by other investigators. However, in case of ANN, it is better to use a structure of 2–6–6–10–1 and Levenberg–Marquardt learning algorithm and sigmoid logistic activation function for prediction of annual precipitation.  相似文献   
527.
Propagation of ion acoustic waves in plasmas containing electrons, positrons and high relativistic ions is investigated. It is shown that the Korteweg-de Vries (KdV) equation describes the nonlinear waves in this media. The amplitude and energy of the KdV solitary waves are derived and the effects of relativistic ions on these quantities are discussed.  相似文献   
528.
In this paper, the ion-acoustic solitons in a weakly relativistic electron-positron-ion plasma have been investigated. Relativistic ions, Maxwell-Boltzmann distributed positrons and nonthermal electrons are considered in collisionless warm plasma. Using a reductive perturbation theory, a Korteweg-de Vries (KdV) equation is derived, and the relativistic effect on the solitons is studied. It is found that the amplitude of solitary waves of the KdV equation diverges at the critical values of plasma parameters. Finally, in this situation, the solitons of a modified KdV (mKdV) equation with finite amplitude is derived.  相似文献   
529.
Ion acoustic shock waves (IASWs) are studied in a plasma consisting of electrons, positrons and ions. Boltzmann distributed positrons and superthermal electrons are considered in the plasma. The dissipation is taken into account the kinematic viscosity among the plasma constituents. The Korteweg–de Vries–Burgers (KdV–Burgers) equation is derived by reductive perturbation method. Shock waves are solutions of KdV–Burgers equation. It is observed that an increasing positron concentration decreases the amplitude of the waves. Furthermore, in the existence of the kinematic viscosity among the plasma, the shock wave structure appears. The effects of ion kinematic viscosity (η 0) and the superthermal parameter (k) on the ion acoustic waves are found.  相似文献   
530.
The time-varying Sun as the main source of space weather affects the Earth??s magnetosphere by emitting hot magnetized plasma in the form of solar wind into interplanetary space. Solar and geomagnetic activity indices and their chaotic characteristics vary abruptly during solar and geomagnetic storms. This variation depicts the difficulties in modeling and long-term prediction of solar and geomagnetic storms. On the other hand, the combination of neurofuzzy models and spectral analysis has been a subject of interest due to their many practical applications in modeling and predicting complex phenomena. However, these approaches should be trained by algorithms that need to be carried out by an offline data set, which influences their performance in online modeling and prediction of time-varying phenomena. This paper proposes an adaptive approach for multi-step ahead prediction of space weather indices by extending the regular singular spectrum analysis and locally linear neurofuzzy models to adaptive approaches. The combination of these recursive approaches fulfills requirements of long-term prediction of solar and geomagnetic activity indices. The results demonstrate the power of the proposed method in online prediction of space weather indices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号