首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225篇
  免费   16篇
  国内免费   4篇
测绘学   4篇
大气科学   32篇
地球物理   49篇
地质学   90篇
海洋学   19篇
天文学   28篇
自然地理   23篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   6篇
  2018年   5篇
  2017年   5篇
  2016年   10篇
  2015年   2篇
  2014年   12篇
  2013年   17篇
  2012年   10篇
  2011年   17篇
  2010年   4篇
  2009年   12篇
  2008年   12篇
  2007年   15篇
  2006年   12篇
  2005年   5篇
  2004年   10篇
  2003年   6篇
  2002年   9篇
  2001年   6篇
  2000年   4篇
  1999年   10篇
  1998年   7篇
  1997年   6篇
  1996年   4篇
  1995年   3篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1984年   5篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有245条查询结果,搜索用时 343 毫秒
11.
Results of more than 800 new measurements of methane (CH4) concentrations in the Southern Hemisphere troposphere (34–41° S, 130–150° E) are reported. These were obtained between September 1980 and March 1983 from the surface at Cape Grim, Tasmania, through the middle (3.5–5.5 km) to the upper troposphere (7–10 km). The concentration of CH4 increased throughout the entire troposphere over the measurement period, adding further support to the view that CH4 concentrations are currently increasing on a global scale. For data averaged vertically through the troposphere the rate of increase found was 20 ppbv/yr or 1.3%/yr at December 1981. In the surface CH4 data a seasonal cycle with a peak to peak amplitude of approximately 28 ppbv is seen, with the minimum concentration occurring in March and the maximum in September–October. A cycle with the same phase as that seen at the surface, but with a significantly decreased amplitude, is apparent in the mid troposphere but no cycle is detected in the upper tropospheric data. The phase and amplitude of the cycle are qualitatively in agreement with the concept that the major sink for methane is oxidation by hydroxyl radicals. Also presented is evidence of a positive vertical gradient in methane, with a suggestion that the magnitude of this gradient has changed over the period of measurements.  相似文献   
12.
The global distribution of methane in the troposphere   总被引:6,自引:0,他引:6  
Methane has been measured in air samples collected at approximately weekly intervals at 23 globally distributed sites in the NOAA/GMCC cooperative flask sampling network. Sites range in latitude from 90° S to 76° N, and at most of these we report 2 years of data beginning in early 1983. All measurements have been made by gas chromatography with a flame ionization detector at the NOAA/GMCC laboratory in Boulder, Colorado. All air samples have been referenced to a single secondary standard of methane-in-air, ensuring a high degree of internal consistency in the data. The precision of measurements is estimated from replicate determinations on each sample as 0.2%. The latitudinal distribution of methane and the seasonal variation of this distribution in the marine boundary layer has been defined in great detail, including a remarkable uniformity in background levels of methane in the Southern Hemisphere. We report for the first time the observation of a complete seasonal cycle of methane at the South Pole. A significant vertical gradient is observed between a sea level and a high altitude site in Hawaii. Globally averaged background concentrations in the marine boundary layer have been calculated for the 2 year-period May 1983–April 1985 inclusive, from which we find an average increase of 12.8 ppb per year, or 0.78% per year when referenced to the globally averaged concentration (1625 ppb) at the mid-point of this period. We present evidence that there has been a slowing down in the methane growth rate.Presented at the Conference on the Scientific Application of Baseline Observations of Atmospheric Composition (SABOAC), Aspendale, Australia, 7–9 November 1984.  相似文献   
13.
14.
New CH4 emission data from a number of Northern and Southern Hemispheric, tropical and temperate termites, are reported, which indicate that the annual global CH4 source due to termites is probably less than 15 Tg. The major uncertainties in this estimate are identified and found to be substantial. Nevertheless, our results suggest that termites probably account for less than 5% of global CH4 emissions.  相似文献   
15.
A numerical study has been made of the heat transfer through a fluid layer with recirculating flow. The outer fluid surface was assumed to be spherical, while the inner surface consisted of a sphere concentrically or eccentrically located with respect to the outer spherical surface. The recirculating flow was assumed to be driven by a gas flow creating stress on the fluid's outer surface so that creeping (low Reynolds number) flow developed in its interior. The present study solves the Stokes equation of motion and the convective diffusion equation in bispherical coordinates and presents the streamline and isotherm patterns.Nomenclature a i inner sphere radius - a d outer sphere radius - A 1 defined by equation (5) - A 2 defined by equation (6) - B 1 defined by equation (7) - B 2 defined by equation (8) - c dimensional factor for bispherical coordinates - C constant in equation (4) - d narrowest distance between the two eccentric spheres - E 2 operator defined by equation (1) in spherical coordinates and by equation (21) in bispherical coordinates - G modified vorticity, defined in equation (22) - G * non-dimensional modified vorticity, defined in equation (28) - h metric coefficient of bispherical coordinate system, defined in equation (18) - k w thermal conductivity of water - K 1 defined by equation (9) - K 2 defined by equation (10) - N Re Reynolds number=2a dU/gn - N Pe,h Peclet number=2a dU/ - n integer counter - q heat flux - r radius - r * non-dimensional radius=r/a d - S surface area - t time - t * non-dimensional time=t/a d 2 - T temperature - T o temperature at inner sphere surface - T a temperature at outer sphere surface - T * non-dimensional temperature;=(T–T o)/(Ta–To) - u velocity - u r radial velocity in spherical coordinates - u angular velocity in spherical coordinates - u radial velocity in bispherical coordinates - u angular velocity in bispherical coordinates - U free stream velocity - u r * =u r/U - u * =u /U - u * =u /U - u * =u /U Greek symbols a 1 small displacement - vorticity, defined in equation (17) - * non-dimensional vorticity, defined in equation (27) - radial bispherical coordinates - o bispherical coordinate of inner sphere - a bispherical coordinate of outer sphere - angular coordinate in spherical coordinates - thermal diffusivity - w thermal diffusivity of water - kinematic viscosity - angular bispherical coordinate - spherical coordinate - streamfunction - non-dimensional streamfunction for spherical coordinates, = /(U a d 2 ) - * non-dimensional streamfunction for bispherical coordinates, defined in equation (26)  相似文献   
16.
A technique has been developed for predicting the irregular advance pattern often observed as water spreads on the surface of the ground. The technique is a combination of stochastic sketching, potential theory, probability theory, and a mass balance equation in the form of an advance equation. The technique can be used on flat as well as sloping terrain and addresses any form of obstructions or constraints to the flow of the water. The stochastic sketching portion of the technique uses cellular automata with transition probability movement rules to sketch the dynamics of small volume water elements in the defined environment. Randomly selected small volume flow path segments are computed and plotted. The envelope of these segments defines the wetted area and the advance front. Several examples are presented showing the patterns produced for various situations.  相似文献   
17.
An experimental work on the transplant of high resolution limited area model(HIRLAM) isfirstly introduced into China.For the implementation,first of all is to adjust a new geographicalcoordination and to remove the instability caused by the Tibetan Plateau,the roof of the world.Then,we have applied this model to simulate a flood-making torrential rain process which occurredin the Changjiang-Huaihe River Valley in July 1991.That revealed the formation,development andmovement of a mesoseale heavy rain system which had made a disastrous flood event in the middleand lower reaches of Changjiang River Valley.The result encourages us to use the HIRLAM for the researches on the Meiyu belt,the salientfeature of precipitation of East Asia,and the numerical prediction of heavy rains in China.  相似文献   
18.
The interaction between a gaining stream and a water-table aquifer is studied at an outwash plain. The aquifer is hydraulically well connected to the stream. Pumping tests were carried out in 1997 and 1998 in two wells 60 m from the stream, screening different depths of the aquifer. Drawdown was measured on both sides of the stream. Hydraulic head, drawdown, and stream depletion data were analyzed using numerical flow models. Similar models were fitted to each of two different data sets: Model A was fitted to steady-state hydraulic head and streamflow gain data not influenced by pumping; and model B was fitted to drawdown data measured during the 1998 pumping test. Each calibrated model closely fits its calibration data; however, predictions were biased if model A was used to predict the calibration data of model B, and vice versa. To further test the models, they were used to predict streamflow depletion during the two pumping tests as well as the drawdown during the 1997 test. Neither of these data were used for calibration. Model A predicted the measured depletions fairly accurately during both tests, whereas the predicted drawdowns in 1997 were significantly larger than actually measured. Contrary to this, the 1997 drawdowns predicted by model B were nearly unbiased; the predicted depletions deviate significantly from the measured depletions in 1997, but they compare well with the observations in 1998. Thus, although field work and analyses were extensive and done carefully to develop a ground water flow model that could predict both drawdown and streamflow depletion, the model predictions are biased. Analyses indicate that the deviations between model and data may be because of error in the models' representations of either the release of water from storage or of the hydrology in the riparian zone.  相似文献   
19.
Two cores from the southwestern shelf and slope of Storfjorden, Svalbard, taken at 389 m and 1485 m water depth have been analyzed for benthic and planktic foraminifera, oxygen isotopes, and ice-rafted debris. The results show that over the last 20,000 yr, Atlantic water has been continuously present on the southwestern Svalbard shelf. However, from 15,000 to 10,000 14C yr BP, comprising the Heinrich event H1 interval, the Bølling-Allerød interstades and the Younger Dryas stade, it flowed as a subsurface water mass below a layer of polar surface water. In the benthic environment, the shift to interglacial conditions occurred at 10,000 14C yr BP. Due to the presence of a thin upper layer of polar water, surface conditions remained cold until ca. 9000 14C yr BP, when the warm Atlantic water finally appeared at the surface. Neither extensive sea ice cover nor large inputs of meltwater stopped the inflow of Atlantic water. Its warm core was merely submerged below the cold polar surface water.  相似文献   
20.
This discussion paper, by a Working Group of INTIMATE (Integration of ice‐core, marine and terrestrial records) and the Subcommision on Quaternary Stratigraphy (SQS) of the International Commission on Stratigraphy (ICS), considers the prospects for a formal subdivision of the Holocene Series/Epoch. Although previous attempts to subdivide the Holocene have proved inconclusive, recent developments in Quaternary stratigraphy, notably the definition of the Pleistocene–Holocene boundary and the emergence of formal subdivisions of the Pleistocene Series/Epoch, mean that it may be timely to revisit this matter. The Quaternary literature reveals a widespread but variable informal usage of a tripartite division of the Holocene (‘early’, ‘middle’ or ‘mid’, and ‘late’), and we argue that this de facto subdivision should now be formalized to ensure consistency in stratigraphic terminology. We propose an Early–Middle Holocene Boundary at 8200 a BP and a Middle–Late Holocene Boundary at 4200 a BP, each of which is linked to a Global Stratotype Section and Point (GSSP). Should the proposal find a broad measure of support from the Quaternary community, a submission will be made to the International Union of Geological Sciences (IUGS), via the SQS and the ICS, for formal ratification of this subdivision of the Holocene Series/Epoch. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号