首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   2篇
  国内免费   1篇
测绘学   19篇
大气科学   15篇
地球物理   33篇
地质学   71篇
海洋学   1篇
天文学   63篇
综合类   3篇
自然地理   4篇
  2023年   2篇
  2022年   4篇
  2021年   6篇
  2020年   8篇
  2019年   3篇
  2018年   22篇
  2017年   14篇
  2016年   14篇
  2015年   3篇
  2014年   21篇
  2013年   16篇
  2012年   13篇
  2011年   14篇
  2010年   5篇
  2009年   7篇
  2008年   6篇
  2007年   5篇
  2006年   2篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1970年   1篇
排序方式: 共有209条查询结果,搜索用时 375 毫秒
31.
In this paper, we study LRS Bianchi type II cosmological model with a nonzero time-dependent cosmological constant Λ for disordered radiation in the framework of Barber’s second self creation theory of gravitation. The physical and geometrical aspects of the model with singularities are also discussed.  相似文献   
32.
The modified stochastic finite fault modelling technique based on dynamic corner frequency has been used to simulate the strong ground motions of M w 4.8 earthquake in the Kachchh region of Gujarat, India. The accelerograms have been simulated for 14 strong motion accelerographs sites (11 sites in Kachchh and three sites in Saurashtra) where the earthquake has been recorded. The region-specific source, attenuation and generic site parameters, which are derived from recordings of small to moderate earthquakes, have been used for the simulations. The main characteristics of the simulated accelerograms, comprised of peak ground acceleration (pga), duration, Fourier and response spectra, predominant period, are in general in good agreement with those of observed ones at most of the sites. The rate of decay of simulated pga values with distance is found to be similar with that of observed values. The successful modelling of the empirical accelerograms indicates that the method can be used to prepare wide range of scenarios based on simulation which provide the information useful for evaluating and mitigating the seismic hazard in the region.  相似文献   
33.
Magnetic and radiometric surveys were carried out over a felsic dominated rifted margin of Proterozoic volcanic terrain of a mobile belt in the eastern India. The studies were made in blocks I and II of 0.65 sq km and 0.70 sq km respectively over a previously identified conductor in the northern fringe of Dalma Volcanics (DVs). In general, both the blocks show high magnetic signature associated with sulfide mineralisation. The interpretation of magnetic data suggests that nature of the causative source is mainly horizontal cylinder in both the blocks. The depth to the top of the causative source is about 25 m in both the blocks and extends upto 60 m in block I and 40m in block II. Gamma count rate exhibits about a factor of two to three enhancements above the field background for both the blocks. The obtained iso-rad maps are similar to uranium and copper belt in the Singhbhum shear zone south of the study area. The anomalous radiometric signature of the residual soil/rock of the area indicates towards hydrothermal alteration. The detailed magnetic surveys and preliminary iso-rads results seems quite encouraging and may be attributed to VMS setting in the area and potential sulfide mineralisation with uranium mineral association in the DVs province.  相似文献   
34.
The present study reports the analysis of GPS TEC prior to 3 earthquakes (M > 6.0). The earthquakes are: (1) Loyalty Island (22°36′S, 170°54′E) on 19 January 2009 (M = 6.6), (2) Samoa Island (15°29′S, 172°5′W) on 30 August 2009 (M = 6.6), and (3) Tohoku (38°19′N, 142°22′E) on 11 March 2011 (M = 9.0). In an effort to search for a precursory signature we analysed the land and ocean parameters prior to the earthquakes, namely SLHF (Land) and SST (Ocean). The GPS TEC data indicate an anomalous behaviour from 1–13 days prior to earthquakes. The main purpose of this study was to explore and demonstrate the possibility of any changes in TEC, SST, and SLHF before, during and after the earthquakes which occurred near or beneath an ocean. This study may lead to better understanding of response of land, ocean, and ionosphere parameters prior to seismic activities.  相似文献   
35.
Among several salt lakes in the Thar Desert of western India, the Sambhar is the largest lake producing about 2 × 105 tons of salt (NaCl) annually. The “lake system” (lake waters, inflowing river waters, and sub-surface brines) provides a unique setting to study the geo-chemical behavior of uranium isotopes (238U, 234U) in conjunction with the evolution of brines over the annual wetting and evaporation cycles. The concentration of 238U and the total dissolved solids (TDS) in lake water increase from ~8 μg L−1 and ~8 g L−1 in monsoon to ~1,400 μg L−1 and 370 g L−1, respectively, during summer time. The U/TDS ratio (~1 μg g−1 salt) and the 234U/238U activity ratio (1.65 ± 0.05), however, remain almost unchanged throughout the year, except when U/TDS ratio approaches to 3.8 at/or beyond halite crystallization. These observations suggest that uranium behaves conservatively in the lake waters during the annual cycle of evaporation. Also, uranium and salt content (TDS) are intimately coupled, which has been used to infer the origin and source of salt in the lake basin. Furthermore, near uniform ratios in evaporating lake waters, when compared to the ratio in seawater (~0.1 μg g−1 salt and 1.14 ± 0.02, respectively), imply that aeolian transport of marine salts is unlikely to be significant source of salt to the lake in the present-day hydrologic conditions. This inference is further consistent with the chemical composition of wet-precipitation occurring in and around the Sambhar lake. The seasonal streams feeding the lake and groundwaters (within the lake’s periphery) have distinctly different ratios of U/TDS (2–69 μg g−1 salt) and 234U/238U (1.15–2.26) compared to those in the lake. The average U/TDS ratio of ~1 μg g−1 salt in lake waters and ~19 μg g−1 salt in river waters suggest dilution of the uranium content by the recycled salt and/or removal processes presently operating in the lake during the extraction of salt for commercial use. Based on mass-balance calculations, a conservative estimate of "uranium sink" (in the form of bittern crust) accounts for ~5 tons year−1 from the lake basin, an estimate similar to its input flux from rivers, i.e., 4.4 tons year−1.  相似文献   
36.
It is generally found that the b values associated with reservoir-triggered seismicity (RTS) are higher than the regional b values in the frequency magnitude relation of earthquakes. In the present study, temporal and spatial variation of b value is investigated using a catalog of 3,000 earthquakes from August 2005 through December 2010 for the Koyna?CWarna region in Western India, which is a classical site of RTS globally. It is an isolated (30?×?20?km2) zone of seismicity where earthquakes of up to M ??5 are found to occur during phases of loading and unloading of the Koyna and Warna reservoirs situated 25?km apart. For the Warna region, it is found that low b values of 0.6?C0.9 are associated with earthquakes of M ??4 during the loading phase. The percentage correlation of the occurrence of an M????4 earthquake with a low b value outside the 1?? or 2?? level is as high as 78?%. A drastic drop in the b value of about 50?% being reported for an RTS site may be an important precursory parameter for short-term earthquake forecast in the future.  相似文献   
37.
Probabilistic Assessment of Tsunami Recurrence in the Indian Ocean   总被引:1,自引:0,他引:1  
The Indian Ocean is one of the most tsunamigenic regions of the world and recently experienced a mega-tsunami in the Sumatra region on 26 December 2004 (M W 9.2 earthquake) with tsunami intensity I (Soloviev-Imamura intensity scale) equal to 4.5, causing heavy destruction of lives and property in the Indian Ocean rim countries. In this study, probabilities of occurrences of large tsunamis with tsunami intensities I ≥ 2.0 and I ≥ 3.0 (average wave heights H ≥ 2.83 m and H ≥ 5.66 m, respectively) during a specified time interval were calculated using three stochastic models, namely, Weibull, gamma and lognormal. Tsunami recurrence was calculated for the whole Indian Ocean and the special case of the Andaman-Sumatra-Java (ASJ) region, excluding the 1945 Makran event from the main data set. For this purpose, a reliable, homogeneous and complete tsunami catalogue with I ≥ 2.0 during the period 1797–2006 was used. The tsunami hazard parameters were estimated using the method of maximum likelihood. The logarithm of likelihood function (ln L) was estimated and used to test the suitability of models in the examined region. The Weibull model was observed to be the most suitable model to estimate tsunami recurrence in the region. The sample mean intervals of occurrences of tsunamis with intensity I ≥ 2.0 and I ≥ 3.0 were calculated for the observed data as well as for the Weibull, gamma and lognormal models. The estimated cumulative and conditional probabilities in the whole Indian Ocean region show recurrence periods of about 27–30 years (2033–2036) and 35–36 years (2039–2040) for tsunami intensities I ≥ 2.0 and I ≥ 3.0, respectively, while it is about 31–35 years (2037–2041) and 41–42 years (2045–2046) for a tsunami of intensity I ≥ 2.0 and I ≥ 3.0, respectively, in the ASJ region. A high probability (>0.9) of occurrence of large tsunamis with I ≥ 2.0 in the next 30–40 years in the Indian Ocean region was revealed.  相似文献   
38.
Trends in rainfall, rainy days and 24 h maximum rainfall are investigated using the Mann-Kendall non-parametric test at twenty-four sites of subtropical Assam located in the northeastern region of India. The trends are statistically confirmed by both the parametric and non-parametric methods and the magnitudes of significant trends are obtained through the linear regression test. In Assam, the average monsoon rainfall (rainy days) during the monsoon months of June to September is about 1606 mm (70), which accounts for about 70% (64%) of the annual rainfall (rainy days). On monthly time scales, sixteen and seventeen sites (twenty-one sites each) witnessed decreasing trends in the total rainfall (rainy days), out of which one and three trends (seven trends each) were found to be statistically significant in June and July, respectively. On the other hand, seventeen sites witnessed increasing trends in rainfall in the month of September, but none were statistically significant. In December (February), eighteen (twenty-two) sites witnessed decreasing (increasing) trends in total rainfall, out of which five (three) trends were statistically significant. For the rainy days during the months of November to January, twenty-two or more sites witnessed decreasing trends in Assam, but for nine (November), twelve (January) and eighteen (December) sites, these trends were statistically significant. These observed changes in rainfall, although most time series are not convincing as they show predominantly no significance, along with the well-reported climatic warming in monsoon and post-monsoon seasons may have implications for human health and water resources management over bio-diversity rich Northeast India.  相似文献   
39.
Cropping system study is not only useful to understand the overall sustainability of agricultural system, but also it helps in generating many important parameters which are useful in climate change impact assessment. Considering its importance, Space Applications Centre, took up a project for mapping and characterizing major cropping systems of Indo-Gangetic Plains of India. The study area included the five states of Indo-Gangetic Plains (IGP) of India, i.e. Punjab, Haryana, Uttar Pradesh, Bihar and West Bengal. There were two aspects of the study. The first aspect included state and district level cropping system mapping using multi-date remote sensing (IRS-AWiFS and Radarsat ScanSAR) data. The second part was to characterize the cropping system using moderate spatial resolution multi-date remote sensing data (SPOT VGT NDVI) and ground survey. The remote sensing data was used to compute three cropping system performance indices (Multiple Cropping Index, Area Diversity Index and Cultivated Land Utilization Index). Ground survey was conducted using questionnaires filled up by 1,000 farmers selected from 103 villages based on the cropping systems map. Apart from ground survey, soil and water sampling and quality analysis were carried out to understand the effect of different cropping systems and their management practices. The results showed that, rice-wheat was the major cropping system of the IGP, followed by Rice-Fallow-Fallow and Maize-Wheat. Other major cropping systems of IGP included Sugarcane based, Pearl millet-Wheat, Rice-Fallow-Rice, Cotton-Wheat. The ground survey could identify 77 cropping systems, out of which 38 are rice-based systems. Out of these 77 cropping systems, there were 5 single crop systems, occupying 6.5% coverage (of all cropping system area), 56 double crop systems with 72.7% coverage, and 16 triple crop systems with 20.8% coverage. The cropping system performance analysis showed that the crop diversity was found to be highest in Haryana, while the cropping intensity was highest in Punjab state.  相似文献   
40.
Rhizofiltration is a subset technique of phytoremediation which refers to the approach of using plant biomass for removing contaminants, primarily toxic metals, from polluted water. The effective implementation of this in situ remediation technology requires experimental as well as conceptual insight of plant–water interactions that control the extraction of targeted metal from polluted water resources. Therefore, pot and simulation experiments are used in this study to investigate the rhizofiltration of a lead containing wastewater using plants of Carex pendula, a common wetland plant found in Europe. The metal contaminant extraction along with plant growth and water uptake rates from a wastewater having varying Pb concentration is studied experimentally for 2 wk. The temporal distribution of the metal concentration in the wastewater and the accumulated metal in different compartments of C. pendula at the end are analyzed using atomic absorption spectrometry. Parameters of the metal uptake kinetics are deduced experimentally for predicting the metal removal by root biomass. Further, mass balance equations coupled with the characterized metal uptake kinetics are used for simulating the metal partitioning from the wastewater to its accumulation in the plant biomass. The simulated metal content in wastewater and plant biomass is compared with the observed data showing a good agreement with the later. Results show that C. pendula accumulates considerable amounts of lead, particularly in root biomass, and can be considered for the cleanup of lead contaminated wastewaters in combination with proper biomass disposal alternatives. Also, the findings can be used for performing further non‐hydroponics experiment to mimic the real wetland conditions more closely.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号