首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   17篇
  国内免费   3篇
测绘学   15篇
大气科学   3篇
地球物理   110篇
地质学   39篇
海洋学   2篇
天文学   14篇
综合类   3篇
自然地理   9篇
  2023年   1篇
  2020年   2篇
  2019年   3篇
  2018年   7篇
  2017年   10篇
  2016年   15篇
  2015年   8篇
  2014年   13篇
  2013年   10篇
  2012年   8篇
  2011年   7篇
  2010年   8篇
  2009年   3篇
  2008年   5篇
  2007年   7篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1998年   1篇
  1995年   7篇
  1994年   3篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   5篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   6篇
  1973年   3篇
  1972年   3篇
  1961年   1篇
  1958年   1篇
  1957年   2篇
排序方式: 共有195条查询结果,搜索用时 93 毫秒
21.
Incremental dynamic analysis (IDA)—a procedure developed for accurate estimation of seismic demand and capacity of structures—requires non‐linear response history analysis of the structure for an ensemble of ground motions, each scaled to many intensity levels, selected to cover the entire range of structural response—all the way from elastic behaviour to global dynamic instability. Recognizing that IDA of practical structures is computationally extremely demanding, an approximate procedure based on the modal pushover analysis procedure is developed. Presented are the IDA curves and limit state capacities for the SAC‐Los Angeles 3‐, 9‐, and 20‐storey buildings computed by the exact and approximate procedures for an ensemble of 20 ground motions. These results demonstrate that the MPA‐based approximate procedure reduces the computational effort by a factor of 30 (for the 9‐storey building), at the same time providing results to a useful degree of accuracy over the entire range of responses—all the way from elastic behaviour to global dynamic instability—provided a proper hysteretic model is selected for modal SDF systems. The accuracy of the approximate procedure does not deteriorate for 9‐ and 20‐storey buildings, although their dynamics is more complex, involving several ‘modes’ of vibration. For all three buildings, the accuracy of the MPA‐based approximate procedure is also satisfactory for estimating the structural capacities for the limit states of immediate occupancy, collapse prevention, and global dynamic instability. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
22.
A method for analysis of response of axisymmetric towers partly submerged in water to earthquake ground motion is presented. The tower is idealized as a finite element system. The hydrodynamic terms are determined by solving the Laplace equation, governing the dynamics of incompressible fluids, subject to appropriate boundary conditions. For cylindrical towers, these solutions are obtained as explicit mathematical solutions of the boundary value problems; whereas they are obtained by the finite element method in case of towers with non-cylindrical outside surface. The response to earthquake ground motion is determined by step-by-step integration of the equations of motion. Analyses of two actual intake towers are presented to illustrate results obtained by this method. The small computation times required for these analyses demonstrate that the method is very efficient. The effectiveness of this formulation lies in avoiding the analysis of a large system by using a substructure approach and in exploiting the important feature that structural response to earthquake ground motion is essentially contained in the first few modes of vibration of the tower with no surrounding water.  相似文献   
23.
24.
We have investigated the resonances due to the perturbations of a geo-centric synchronous satellite under the gravitational forces of the Sun, the Moon and the Earth including it’s equatorial ellipticity. The resonances at the points resulting from (i) the commensurability between \(\dot{\theta}_{0}\) (steady-state orbital angular rate of the satellite) and \(\dot{\theta}_{m}\) (angular velocity of the moon around the earth) and (ii) the commensurability between \(\dot{\theta}_{0}\) and \(\dot{\psi}_{0}\) (steady-state regression rate of the synchronous satellite) are analyzed. The amplitude and the time period of the oscillation have been determined by using the procedure as given in Brown and Shook (Planetary Theory, Cambridge University Press, Cambridge, 1933). We have observed that as θ m (0°θ m ≤45°) and ψ (0°ψ≤135°) increase, the amplitude decreases and the time period also decreases. We have also shown the effect of ψ on amplitude and time period for 0°Γ≤45°, where Γ is the angle measured from the minor axis of the earth’s equatorial ellipse to the projection of the satellite on the plane of the equator.  相似文献   
25.
A time domain boundary element method (BEM) for evaluating stresses in an axisymmetric soil mass undergoing consolidation has been developed. Previous BEM work on axisymmetric poroelasticity for boundary displacements and pore pressures is extended to permit the computation of stresses at both boundary and interior points. The stress formulation preserves the surface-only discretization. The boundary displacement integral equation is progressively differentiated to obtain the related stress and strain integral equations. Explicit expressions for the steady-state axisymmetric fundamental solutions are derived in this process. The transient components of the integrands are obtained directly from the transformation of the three-dimensional kernels into a cylindrical system. Numerical implementation of these integral equations is carried out within a general purpose BEM computer code and several illustrative examples are presented to validate the method.  相似文献   
26.
27.
This study investigated land use/land cover change (LULCC) dynamics using temporal satellite images and spatial statistical cluster analysis approaches in order to identify potential LULCC hot spots in the Pune region. LULCC hot spot classes defined as new, progressive and non-progressive were derived from Gi* scores. Results indicate that progressive hot spots have experienced high growth in terms of urban built-up areas (20.67% in 1972–1992 and 19.44% in 1992–2012), industrial areas (0.73% in 1972–1992 and 3.46% in 1992–2012) and fallow lands (4.35% in 1972–1992 and ?6.38% in 1992–2012). It was also noticed that about 28.26% of areas near the city were identified as new hot spots after 1992. Hence, non-significant change areas were identified as non-progressive after 1992. The study demonstrated that LULCC hot spot mapping through the integrated spatial statistical approach was an effective approach for analysing the direction, rate, spatial pattern and spatial relationship of LULCC.  相似文献   
28.
Planar waves events recorded in a seismic array can be represented as lines in the Fourier domain. However, in the real world, seismic events usually have curvature or amplitude variability, which means that their Fourier transforms are no longer strictly linear but rather occupy conic regions of the Fourier domain that are narrow at low frequencies but broaden at high frequencies where the effect of curvature becomes more pronounced. One can consider these regions as localised “signal cones”. In this work, we consider a space–time variable signal cone to model the seismic data. The variability of the signal cone is obtained through scaling, slanting, and translation of the kernel for cone‐limited (C‐limited) functions (functions whose Fourier transform lives within a cone) or C‐Gaussian function (a multivariate function whose Fourier transform decays exponentially with respect to slowness and frequency), which constitutes our dictionary. We find a discrete number of scaling, slanting, and translation parameters from a continuum by optimally matching the data. This is a non‐linear optimisation problem, which we address by a fixed‐point method that utilises a variable projection method with ?1 constraints on the linear parameters and bound constraints on the non‐linear parameters. We observe that slow decay and oscillatory behaviour of the kernel for C‐limited functions constitute bottlenecks for the optimisation problem, which we partially overcome by the C‐Gaussian function. We demonstrate our method through an interpolation example. We present the interpolation result using the estimated parameters obtained from the proposed method and compare it with those obtained using sparsity‐promoting curvelet decomposition, matching pursuit Fourier interpolation, and sparsity‐promoting plane‐wave decomposition methods.  相似文献   
29.
Image gathers as a function of subsurface offset are an important tool for the inference of rock properties and velocity analysis in areas of complex geology. Traditionally, these gathers are thought of as multidimensional correlations of the source and receiver wavefields. The bottleneck in computing these gathers lies in the fact that one needs to store, compute, and correlate these wavefields for all shots in order to obtain the desired image gathers. Therefore, the image gathers are typically only computed for a limited number of subsurface points and for a limited range of subsurface offsets, which may cause problems in complex geological areas with large geologic dips. We overcome increasing computational and storage costs of extended image volumes by introducing a formulation that avoids explicit storage and removes the customary and expensive loop over shots found in conventional extended imaging. As a result, we end up with a matrix–vector formulation from which different image gathers can be formed and with which amplitude‐versus‐angle and wave‐equation migration velocity analysis can be performed without requiring prior information on the geologic dips. Aside from demonstrating the formation of two‐way extended image gathers for different purposes and at greatly reduced costs, we also present a new approach to conduct automatic wave‐equation‐based migration‐velocity analysis. Instead of focusing in particular offset directions and preselected subsets of subsurface points, our method focuses every subsurface point for all subsurface offset directions using a randomized probing technique. As a consequence, we obtain good velocity models at low cost for complex models without the need to provide information on the geologic dips.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号