Vein structures are typically the earliest expression of brittle deformation within sediments. These mud-filled veins, which characteristically occur regularly spaced within bed-parallel arrays, form in sediments that possess a strong interlocking particle framework. Downslope creep has been proposed to explain the origins of vein structures, however, a recent suggestion that they are generated by the passage of earthquake shear waves through sediments explains aspects of their morphology, and their dominant occurrence at active convergent margins. Their coexistence with less disruptive “ghost veins” in Peru margin sediments, and their almost normal attitude to bedding, however, suggests that vein structures were formed by processes more complex than downslope creep, or seismically induced shearing alone.
Experimental earthquake simulation was undertaken by laterally shaking a box containing crushed diatomite. Fractures were induced almost normal to the horizontal shaking direction, and to a lesser extent as antithetic Riedel shears, both of which closely resembled vein structures. The fracturing process during shaking may be viewed as a progressive fragmentation of the diatomite, in which new fractures form half-way between pre-existing ones. Thus fracture spacings are progressively halved. Shear zones oriented at a low angle to the shaking direction were also generated, combining with the high-angle fractures to form structures very similar to those observed in Peru margin sediments. When shaken, fines added to the diatomite segregated into planar zones that resembled ghost veins, half-way between fractures. The alternating pattern of fractures and fines indicated that a standing pressure wave had been created within the box during shaking. The fractures were created by alternating compression and extension at the antinodes, while the fines concentrated in zones of minimum grain movement around the nodal planes. This suggests that vein structures are initiated by the combined action of shear and pressure waves within a sediment. The strain waves may be seismic in origin, or may also form in downslope movement system. 相似文献
The mathematical base of the double porosity concept, consisting of the continuity and equilibrium equation respectively, is briefly reviewed. A quasi-steady-state transfer function, the so-called leakage term, is used. Important aspects of the developed code, based on the double porosity theory, are presented together with two hypothetical example problems. The resulting trend of the settlements are compared to those from previous work and was found to be significantly different. However, the implications are that the present study exhibits a more realistic prediction for the settlement. 相似文献
Scapolite at Mary Kathleen (North-Western Queensland) occurs in calcareous and non-calcareous metapelites, acid and basic metavolcanics and metadolerites. Graphical treatment of the relationship between scapolite composition (Me%) and the host rock oxide ratios CaO/Na2O and Al2O3/(CaO + Na2O) reveals the following points:
The calcareous metapelites are also very sodic.
Scapolite in calcareous metapelites is more marialitic than that in low-calcium equivalents.
In graphs of Me% against CaO/Na2O and Al2O3/(CaO + Na2O) the metasediments and the metaigneous rocks show markedly different trends.
It is concluded that scapolite in the metasediments originated by isochemical metamorphism of shales and marls containing evaporitic halite. The local abundance of halite was the main control on the composition and distribution of the scapolite, but the relative abundance of CaO and Na2O was a modifying factor. In the metaigneous rocks scapolite formed metasomatically during regional metamorphism by the introduction of volatile-rich fluids derived from the adjacent evaporitic sediments. The relative availability of CO2 and Cl2 again appears to have been the primary control on scapolite composition and may in turn have been controlled by bulk rock composition. 相似文献
The dominant hydrogen impurity in synthetic quartz is molecular H2O. H-OH groups also occur, but there is no direct evidence for the hydrolysis of Si-O-Si bonds to yield Si-OH HO-Si groups. Molecular H2O concentrations in the synthetic quartz crystals studied range from less than 10 to 3,300 ppm (H/Si), and decrease smoothly by up to an order of magnitude with distance away from the seed. OH? concentrations range from 96 to 715 ppm, and rise smoothly with distance away from the seed by up to a factor of three. The observed OH? is probably all associated with cationic impurities, as in natural quartz. Molecular H2O is the dominant initial hydrogen impurity in weak quartz. The hydrolytic weakening of quartz may be caused by the transformation H2O + Si-O-Si → 2SiOH, but this may be a transitory change with the SiOH groups recombining to form H2O, and the average SiOH concentration remaining very low. Synthetic quartz is strengthened when the H2O is accumulated into fluid inclusions and cannot react with the quartz framework. 相似文献
Natural malachite is a well defined solid demonstrating reproducible solubility behavior over a wide range of pH. The following equilibrium constants associated with the malachite dissolution equilibrium at 25°C, 1 atm were determined: (infinite dilution) (0.72 ionic strength) (36.9‰ salinity seawater). The temperature dependence of a “mixed” equilibrium constant, Ksp+, of the form: has been measured at I = 0.72, yielding the relationship: within a 5–25°C temperature range. The effect of pressure on the solubility of malachite in water and seawater was estimated from partial molar volume and compressibility data. For 25 °C at infinite dilution and in seawater .Comparison of stoichiometric and apparent malachite equilibrium constants has been used to estimate the extent of copper(II) ion interaction at the ionic strength of seawater. In dilute carbonate medium (total alkalinity, TA = 2.4 meq/kg H2O, pH 8.3), 2.9% of total dissolved copper exists as the free copper(II) ion and in seawater (S = 36.9%., TA = 2.3 meq/kg H2O, pH = 8.1), is 3.1%.Total dissolved copper levels of approximately 450–750 nMol/Kg are necessary to attain malachite saturation conditions in the open ocean. Observations of malachite particles suspended in seawater must be explained by precipitation or solid phase substitution reactions from localized environments rather than by direct precipitation from bulk seawater. 相似文献
Mangakino, the oldest rhyolitic caldera centre delineated in the Taupo Volcanic Zone of New Zealand, generated two very large (super-sized) ignimbrite eruptions, the 1.21 ± 0.04 Ma >500 km3 Ongatiti and ~1.0 Ma ~1,200 km3 Kidnappers events, the latter of which was followed after a short period of erosion by the ~200 km3 Rocky Hill eruption. We present U/Pb ages and trace-element analyses on zircons from pumice clasts from these three eruptions by Secondary Ion Mass Spectrometry (SIMS) using SHRIMP-RG instruments to illustrate the evolution of the respective magmatic systems. U–Pb age spectra from the Ongatiti imply growth of the magmatic system over ~250 kyr, with a peak of crystallisation around 1.32 Ma, ~100 kyr prior to eruption. The zircons are inferred to have then remained stable in a mush with little crystallisation and/or dissolution before later rejuvenation of the system at the lead-in to eruption. The paired Kidnappers and Rocky Hill eruptions have U–Pb zircon ages and geochemical signatures that suggest they were products of a common system grown over ~200 kyr. The Kidnappers and Rocky Hill samples show similar weakly bimodal age spectra, with peaks at 1.1 and 1.0 Ma, suggesting that an inherited antecrystic population was augmented by crystals grown at ages within uncertainty of the eruption age. In the Kidnappers, this younger age peak is dominantly seen in needle-shaped low U grains with aspect ratios of up to 18. In all three deposits, zircon cores show larger ranges and higher absolute concentrations of trace elements than zircon rims, consistent with zircon crystallisation from evolving melts undergoing crystal fractionation involving plagioclase and amphibole. Abundances and ratios of many trace elements frequently show variations between different sectors within single grains, even where there is no visible sector zoning in cathodoluminescence (CL) imaging. Substitution mechanisms, as reflected in the molar (Sc + Y + REE3+)/P ratio, differ in the same growth zone between the sides (along a-axis and b-axis: values approaching 1.0) and tips (c-axis: values between 1.5 and 5.0) of single crystals. These observations have implications for the use of zircons for tracking magmatic processes, particularly in techniques where CL zonation within crystals is not assessed and small analytical spot sizes cannot be achieved. These observations also limit applicability of the widely used Ti-in-zircon thermometer. The age spectra for the Ongatiti and Kidnappers/Rocky Hill samples indicate that both magmatic systems were newly built in the time-breaks after respective previous large eruptions from Mangakino. Trace element variations defining three-component mixing suggest that zircons, sourced from multiple melts, contributed to the population in each system. 相似文献
The stratigraphy in Vines 1, a 2017.5 m-deep cored stratigraphic hole drilled by the Geological Survey of Western Australia in 2001 near the Western Australian – South Australian border, has been reinterpreted with implications for the Neoproterozoic to Cambrian geological history of the Officer Basin. A previous interpretation considered the intersected succession as a conformable stratigraphic package, the Vines Formation. An assemblage of palynomorphs, found throughout the hole and previously used to infer an age of no older than earliest Cambrian, is now thought to consist of contaminants. An older assemblage, which is considered to be reworked and inherited from underlying rocks, provides a new maximum age constraint of mid-Neoproterozoic. Based on sedimentological interpretations and comparisons with other drillholes in the western Officer Basin, and the succession in the eastern Officer Basin, the Vines 1 succession is reinterpreted as four discrete sedimentary packages, the Pirrilyungka (new name), Wahlgu, Lungkarta and Vines (redefined) Formations, in ascending order. The Pirrilyungka and Wahlgu Formations include glacigenic sediments and may correlate with similar glacial successions in Supersequences 2 and 3 (mid to late Cryogenian) of the Centralian Superbasin, and the Sturt Tillite and Elatina Formation and their equivalents in the Adelaide Rift Complex of South Australia, respectively. The eolian Lungkarta Formation and fluvial Vines Formation are considered, on regional evidence, to be most likely of Ediacaran to earliest Cambrian age. 相似文献
We propose that the europium excess in Precambrian sedimentary rocks, relative to those of younger age is derived from volcanic rocks of ancient island arcs, which were the source materials for the sediments. Precambrian sedimentary rocks and present-day volcanic rocks of island arcs have similar REE patterns, total REE abundances and excess Eu, relative to the North American shale composite. The present upper crustal REE pattern, as exemplified by that of sediments, is depleted in Eu, relative to chondrites. This depletion is considered to be a consequence of development of a grandioritic upper crust by partial melting in the lower crust, which selectively retains europium. 相似文献
A new family of unconditionally stable one-step methods for the direct integration of the equations of structural dynamics is introduced and is shown to possess improved algorithmic damping properties which can be continuously controlled. The new methods are compared with members of the Newmark family, and the Houbolt and Wilson methods. 相似文献