首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7069篇
  免费   286篇
  国内免费   108篇
测绘学   260篇
大气科学   625篇
地球物理   1698篇
地质学   2352篇
海洋学   692篇
天文学   1229篇
综合类   25篇
自然地理   582篇
  2022年   40篇
  2021年   78篇
  2020年   89篇
  2019年   107篇
  2018年   167篇
  2017年   162篇
  2016年   228篇
  2015年   173篇
  2014年   217篇
  2013年   396篇
  2012年   250篇
  2011年   387篇
  2010年   291篇
  2009年   411篇
  2008年   405篇
  2007年   361篇
  2006年   321篇
  2005年   279篇
  2004年   250篇
  2003年   267篇
  2002年   229篇
  2001年   159篇
  2000年   170篇
  1999年   128篇
  1998年   150篇
  1997年   101篇
  1996年   109篇
  1995年   84篇
  1994年   79篇
  1993年   74篇
  1992年   69篇
  1991年   73篇
  1990年   48篇
  1989年   53篇
  1988年   42篇
  1987年   54篇
  1986年   54篇
  1985年   75篇
  1984年   72篇
  1983年   68篇
  1982年   63篇
  1981年   63篇
  1980年   55篇
  1979年   47篇
  1978年   56篇
  1977年   38篇
  1976年   42篇
  1975年   37篇
  1974年   35篇
  1973年   37篇
排序方式: 共有7463条查询结果,搜索用时 31 毫秒
981.
982.
This paper quantifies the sensitivity of radiation budget quantities to different cloud types over the Asian monsoon region using the International Satellite Cloud Climatology Project. Multiple regression was used to estimate the radiative effects of individual cloud type. It was observed that the regression performed better when the solution was constrained with clear sky fluxes, which is evident by an improvement in R 2 statistics. The sensitivity coefficients calculated for the Asian monsoon region reveal that, while the LWCRCF and SWCRF will be most vulnerable to changes in cloud cover of deep convective clouds, NETCRF will be susceptible to changes in the nimbostratus clouds. Although the cloud radiative forcing of individual cloud types are found to be similar in sign to previous global findings, their magnitudes are found to vary. It is seen that cirrus clouds play an important role in governing the radiative behavior of this region.  相似文献   
983.
The sudden release of a quantity of gas into the atmospheric boundary layer produces a contaminant cloud. The expected mass fraction function provides a relatively simple measure of the contaminant concentration values found within the cloud and represents the ensemble-averaged fraction of the conserved release mass found at the different contaminant concentration intervals as the cloud evolves. The plume generated by a line source in grid turbulence is used to investigate the expected mass fraction function as it applies to scalar concentration values found on a typical line normal to the plume axis. Simultaneous particle image velocimetry and planar laser induced fluorescence are used to measure velocity and concentration fields, respectively. The measured expected mass fraction functions are observed to be approximately self-similar when concentration values are normalized by the centreline mean concentration. The moments of the expected mass fraction function are observed to be simply related to the centreline moments of the probability density function of scalar concentration. Arguments based on a source fluid, non-source fluid decomposition of the scalar probability density function are used to explain these observations. The results are compared with the theoretical and experimental results established for a line source of scalar in grid turbulence.  相似文献   
984.
The evolution of precipitating convective systems in West Africa has been a research topic throughout the past three decades and is considered to be influenced by surface–atmosphere interactions. This study builds on the previous research by examining the sensitivity of a mesoscale convective system (MCS) to a change in the vegetation cover by using a regional atmospheric model with a high horizontal resolution. Vegetation cover values in the region between 10 and 15°N have increased by 10–30% over the last 20 years. The effect of both an increase and a decrease in vegetation cover by 10, 20 and 30% is investigated. The MCS case selected occurred on 11 June 2006 and was observed during the African Monsoon Multidisciplinary Analysis field campaign in Dano, Burkina Faso. The model is able to reproduce the most important characteristics of the MCS and the atmospheric environment. For the investigated case, no clear precipitation response of the MCS to the applied vegetation scenarios is found. The vegetation changes do alter the surface fluxes in the days before the MCS arrives, which have a clear effect on the modelled convective available potential energy (CAPE) values. However, a link between CAPE, mesoscale circulation and rainfall amounts could not be demonstrated as a dynamical mechanism is found to counteract the CAPE signal. By using a kilometre-scale model, a change in the cold pool dynamics of the MCS could be detected which results from alterations in boundary layer moisture. The effect of vegetation changes on the MCS is thus not straightforward and a complex interaction between different processes should be taken into account.  相似文献   
985.
Adaptation is an important element on the climate change policy agenda. Integrated assessment models, which are key tools to assess climate change policies, have begun to address adaptation, either by including it implicitly in damage cost estimates, or by making it an explicit control variable. We analyze how modelers have chosen to describe adaptation within an integrated framework, and suggest many ways they could improve the treatment of adaptation by considering more of its bottom-up characteristics. Until this happens, we suggest, models may be too optimistic about the net benefits adaptation can provide, and therefore may underestimate the amount of mitigation they judge to be socially optimal. Under some conditions, better modeling of adaptation costs and benefits could have important implications for defining mitigation targets.  相似文献   
986.
Modelling the transfer of heat, water vapour, and CO2 between the biosphere and the atmosphere is made difficult by the complex two-way interaction between leaves and their immediate microclimate. When simulating scalar sources and sinks inside canopies on seasonal, inter-annual, or forest development time scales, the so-called well-mixed assumption (WMA) of mean concentration (i.e. vertically constant inside the canopy but dynamically evolving in time) is often employed. The WMA eliminates the need to model how vegetation alters its immediate microclimate, which necessitates formulations that utilize turbulent transport theories. Here, two inter-related questions pertinent to the WMA for modelling scalar sources, sinks, and fluxes at seasonal to inter-annual time scales are explored: (1) if the WMA is to be replaced so as to resolve this two-way interaction, how detailed must the turbulent transport model be? And (2) what are the added predictive skills gained by resolving the two-way interaction vis-à-vis other uncertainties such as seasonal variations in physiological parameters. These two questions are addressed by simulating multi-year mean scalar concentration and eddy-covariance scalar flux measurements collected in a Loblolly pine (P. taeda L.) plantation near Durham, North Carolina, U.S.A. using turbulent transport models ranging from K-theory (or first-order closure) to third-order closure schemes. The multi-layer model calculations with these closure schemes were contrasted with model calculations employing the WMA. These comparisons suggested that (i) among the three scalars, sensible heat flux predictions are most biased with respect to eddy-covariance measurements when using the WMA, (ii) first-order closure schemes are sufficient to reproduce the seasonal to inter-annual variations in scalar fluxes provided the canonical length scale of turbulence is properly specified, (iii) second-order closure models best agree with measured mean scalar concentration (and temperature) profiles inside the canopy as well as scalar fluxes above the canopy, (iv) there are no clear gains in predictive skills when using third-order closure schemes over their second-order closure counterparts. At inter-annual time scales, biases in modelled scalar fluxes incurred by using the WMA exceed those incurred when correcting for the seasonal amplitude in the maximum carboxylation capacity (V cmax, 25) provided its mean value is unbiased. The role of local thermal stratification inside the canopy and possible computational simplifications in decoupling scalar transfer from the generation of the flow statistics are also discussed.
“The tree, tilting its leaves to capture bullets of light; inhaling, exhaling; its many thousand stomata breathing, creating the air”. Ruth Stone, 2002, In the Next Galaxy
  相似文献   
987.
To understand the response of the Greenland ice sheet to climate change the so-called ablation zone is of particular importance, since it accommodates the yearly net surface ice loss. In numerical models and for data analysis, the bulk aerodynamic method is often used to calculate the turbulent surface fluxes, for which the aerodynamic roughness length (z 0) is a key parameter. We present, for the first time, spatial and temporal variations of z 0 in the ablation area of the Greenland ice sheet using year-round data from three automatic weather stations and one eddy-correlation mast. The temporal variation of z 0 is found to be very high in the lower ablation area (factor 500) with, at the end of the summer melt, a maximum in spatial variation for the whole ablation area of a factor 1000. The variation in time matches the onset of the accumulation and ablation season as recovered by sonic height rangers. During winter, snow accumulation and redistribution by snow drift lead to a uniform value of z 0≈ 10−4 m throughout the ablation area. At the beginning of summer, snow melt uncovers ice hummocks and z 0 quickly increases well above 10−2 m in the lower ablation area. At the end of summer melt, hummocky ice dominates the surface with z 0 > 5  ×  10−3 m up to 60 km from the ice edge. At the same time, the area close to the equilibrium line (about 90 km from the ice edge) remains very smooth with z 0 = 10−5 m. At the beginning of winter, we observed that single snow events have the potential to lower z 0 for a very rough ice surface by a factor of 20 to 50. The total surface drag of the abundant small-scale ice hummocks apparently dominates over the less frequent large domes and deep gullies. The latter results are verified by studying the individual drag contributions of hummocks and domes with a drag partition model.  相似文献   
988.
We test a surface renewal model that is widely used over snow and ice surfaces to calculate the scalar roughness length (z s ), one of the key parameters in the bulk aerodynamic method. For the first time, the model is tested against observations that cover a wide range of aerodynamic roughness lengths (z 0). During the experiments, performed in the ablation areas of the Greenland ice sheet and the Vatnajökull ice cap in Iceland, the surface varied from smooth snow to very rough hummocky ice. Over relatively smooth snow and ice with z 0 below a threshold value of approximately 10?3 m, the model performs well and in accord with earlier studies. However, with growing hummock size, z 0 increases well above the threshold and the bulk aerodynamic flux becomes significantly smaller than the eddy-correlation flux (e.g. for z 0 = 0.01 m, the bulk aerodynamic flux is about 50% smaller). Apparently, the model severely underpredicts z s over hummocky ice. We argue that the surface renewal model does not account for the deep inhomogeneous roughness sublayer (RSL) that is generated by the hummocks. As a consequence, the homogeneous substrate ice grain cover becomes more efficiently ‘ventilated’. Calculations with an alternative model that includes the RSL and was adapted for use over hummocky ice, qualitatively confirms our observations. We suggest that, whenever exceedance of the threshold occurs (z 0  >  10?3 m, i.e., an ice surface covered with at least 0.3-m high hummocks), the following relation should be used to calculate scalar roughness lengths, ln (z s /z 0)  =  1.5  ? 0.2 ln (Re *)  ? 0.11(ln (Re *))2.  相似文献   
989.
Sea level rise (SLR) due to climate change will increase storm surge height along the 825 km long coastline of Metro Boston, USA. Land at risk consists of urban waterfront with piers and armoring, residential areas with and without seawalls and revetments, and undeveloped land with either rock coasts or gently sloping beachfront and low-lying coastal marshes. Risk-based analysis shows that the cumulative 100 year economic impacts on developed areas from increased storm surge flooding depend heavily upon the adaptation response, location, and estimated sea level rise. Generally it is found that it is advantageous to use expensive structural protection in areas that are highly developed and less structural approaches such as floodproofing and limiting or removing development in less developed or environmentally sensitive areas.  相似文献   
990.
Sensitivity studies with regional climate models are often performed on the basis of a few simulations for which the difference is analysed and the statistical significance is often taken for granted. In this study we present some simple measures of the confidence limits for these types of experiments by analysing the internal variability of a regional climate model run over West Africa. Two 1-year long simulations, differing only in their initial conditions, are compared. The difference between the two runs gives a measure of the internal variability of the model and an indication of which timescales are reliable for analysis. The results are analysed for a range of timescales and spatial scales, and quantitative measures of the confidence limits for regional model simulations are diagnosed for a selection of study areas for rainfall, low level temperature and wind. As the averaging period or spatial scale is increased, the signal due to internal variability gets smaller and confidence in the simulations increases. This occurs more rapidly for variations in precipitation, which appear essentially random, than for dynamical variables, which show some organisation on larger scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号