首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7069篇
  免费   286篇
  国内免费   108篇
测绘学   260篇
大气科学   625篇
地球物理   1698篇
地质学   2352篇
海洋学   692篇
天文学   1229篇
综合类   25篇
自然地理   582篇
  2022年   40篇
  2021年   78篇
  2020年   89篇
  2019年   107篇
  2018年   167篇
  2017年   162篇
  2016年   228篇
  2015年   173篇
  2014年   217篇
  2013年   396篇
  2012年   250篇
  2011年   387篇
  2010年   291篇
  2009年   411篇
  2008年   405篇
  2007年   361篇
  2006年   321篇
  2005年   279篇
  2004年   250篇
  2003年   267篇
  2002年   229篇
  2001年   159篇
  2000年   170篇
  1999年   128篇
  1998年   150篇
  1997年   101篇
  1996年   109篇
  1995年   84篇
  1994年   79篇
  1993年   74篇
  1992年   69篇
  1991年   73篇
  1990年   48篇
  1989年   53篇
  1988年   42篇
  1987年   54篇
  1986年   54篇
  1985年   75篇
  1984年   72篇
  1983年   68篇
  1982年   63篇
  1981年   63篇
  1980年   55篇
  1979年   47篇
  1978年   56篇
  1977年   38篇
  1976年   42篇
  1975年   37篇
  1974年   35篇
  1973年   37篇
排序方式: 共有7463条查询结果,搜索用时 62 毫秒
231.
232.
233.
234.
This annual review of laser-ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) covers the year 2003. Significant advances were made in understanding laser-sample interactions. In particular, research defined the distribution of particle sizes produced by the interplay of laser wavelength, laser pulse width and the gas environment of ablation. A link between particle sizes and elemental and isotopic fractionation at both the ablation site and in the ICP was established. Experimental 15 7 nm and femtosecond laser systems were tested with promising results. The number of applications of LA-ICP-MS in geology and environmental Earth science continued to grow with particular interest in element concentration and isotope ratio profiling of materials, linking composition to time scales. In situ isotopic ratio measurements were increasingly made using multicollector magnetic sector ICP-MS instruments. Other applications of wide interest included bulk sampling of rocks and ores prepared as lithium borate glasses; low level analysis of platinum-group elements, rhenium and gold in sulfides, metal and silicates; in situ uranium-lead zircon geochronology; and melt and fluid inclusion analysis.  相似文献   
235.
We present new U/Pb and Pb/Pb radiometric age data from two tectono-stratigraphic units of the regionally extensive Bolu Massif, in the W Pontides (İstanbul Fragment), N Turkey. A structurally lower unit (Sünnice Group) is cut by small meta-granitic intrusions, whereas the structurally higher unit comprises meta-volcanic rocks (Çaşurtepe Fm) cut by meta-granitic plutons (Tüllükiriş and Kapıkaya plutons). U/Pb single-crystal dating of zircons from the Kapıkaya Pluton yielded a concordant cluster, with a mean 238U/206Pb age of 565.3 ± 1.9 Ma. Zircons from the Tüllükiriş Pluton (affected by Pb loss) gave a 207Pb/206Pb age of 576 ± 6 Ma age (Late Precambrian). Small meta-granitic intrusions cutting the Sünnice Group yielded a less precise 207Pb/206Pb age of 262 ± 19 Ma (Early Permian). The older ages from the Bolu Massif confirm the existence of latest Precambrian arc magmatism related to subduction of a Cadomian ocean. We infer that the Bolu Massif represents a fragment of a Cadomian active margin. Cadomian orogenic units were dispersed as exotic terranes throughout the Variscan and Tethyan orogens, and the Bolu Massif probably reached its present position prior to latest Palaeozoic time. Our dating results also confirm that NW Turkey was affected by Hercynian magmatism related to subduction of Palaeotethys, as inferred for other areas of the Pontides.  相似文献   
236.
Vp and Vs values have been measured experimentally and calculated for granulite-facies lower crustal xenoliths from central Ireland close to the Caledonian Iapetus suture zone. The xenoliths are predominantly foliated and lineated metapelitic (garnet–sillimanite–K-feldspar) granulites. Their metapelitic composition is unusual compared with the mostly mafic composition of lower crustal xenoliths world-wide. Based on thermobarometry, the metapelitic xenoliths were entrained from depths of c. 20–25 ± 3.5 km and rare mafic granulites from depths of 31–33 ± 3.4 km. The xenoliths were emplaced during Lower Carboniferous volcanism and are considered to represent samples of the present day lower crust.Vp values for the metapelitic granulites range between 6.26 and 7.99 km s− 1 with a mean value of 7.09 ± 0.4 km s− 1. Psammite and granitic orthogneiss samples have calculated Vp values of 6.51 and 6.23 km s− 1, respectively. Vs values for the metapelites are between 3.86 and 4.34 km s− 1, with a mean value of 4.1 ± 0.15 km s− 1. The psammite and orthogneiss have calculated Vs values of 3.95 and 3.97 km s− 1, respectively.The measured seismic velocities correlate with density and with modal mineralogy, especially the high content of sillimanite and garnet. Vp anisotropy is between 0.15% and 13.97%, and a clear compositional control is evident, mainly in relation to sillimanite abundance. Overall Vs anisotropy ranges from 1% to 11%. Poisson's ratio (σ) lies between 0.25 and 0.35 for the metapelitic granulites, mainly reflecting a high Vp value due to abundant sillimanite in the sample with the highest σ. Anisotropy is probably a function of deformation associated with the closure of the Iapetus ocean in the Silurian as well as later extension in the Devonian. The orientation of the bulk strain ellipsoid in the lower crust is difficult to constrain, but lineation is likely to be NE–SW, given the strike-slip nature of the late Caledonian and subsequent Acadian deformation.When corrected for present-day lower crustal temperature, the experimentally determined Vp values correspond well with velocities from the ICSSP, COOLE I and VARNET seismic refraction lines. Near the xenolith localities, the COOLE I line displays two lower crustal layers with in situ Vp values of 6.85–6.9 and 6.9–8.0 km s− 1, respectively. The upper (lower velocity) layer corresponds well with the metapelitic granulite xenoliths while the lower (higher velocity) layer matches that of the basic granulite xenoliths, though their metamorphic pressures suggest derivation from depths corresponding to the present-day upper mantle.  相似文献   
237.
238.
239.
Arsenate, As(V), sorption onto synthetic iron(II) monosulfide, disordered mackinawite (FeS), is fast. As(V) sorption decreases above the point of zero surface charge of FeS and follows the pH-dependent concentration of positively charged surface species. No redox reaction is observed between the As(V) ions and the mineral surface over the time span of the experiments. This observation shows that As(V) dominantly forms an outer-sphere complex at the surface of mackinawite. Arsenite, As(III), sorption is not strongly pH-dependent and can be expressed by a Freundlich isotherm. Sorption is fast, although slower than that of As(V). As(III) also forms an outer-sphere complex at the surface of mackinawite. In agreement with previous spectroscopic studies, complexation at low As(V) and As(III) concentration occurs preferentially at the mono-coordinated sulfide edge sites. The Kd (L g−1) values obtained from linear fits to the isotherm data are ∼9 for As(V) and ∼2 for As(III). Stronger sorption of As(V) than As(III), and thus a higher As(III) mobility, may be reflected in natural anoxic sulfidic waters when disordered mackinawite controls arsenic mobility.  相似文献   
240.
We examined the fluvial geochemistry of the Huang He (Yellow River) in its headwaters to determine natural chemical weathering rates on the northeastern Qinghai-Tibet Plateau, where anthropogenic impact is considered small. Qualitative treatment of the major element composition demonstrates the dominance of carbonate and evaporite dissolution. Most samples are supersaturated with respect to calcite, dolomite, and atmospheric CO2 with moderate (0.710-0.715) 87Sr/86Sr ratios, while six out of 21 total samples have especially high concentrations of Na, Ca, Mg, Cl, and SO4 from weathering of evaporites. We used inversion model calculations to apportion the total dissolved cations to rain-, evaporite-, carbonate-, and silicate-origin. The samples are either carbonate- or evaporite-dominated, but the relative contributions of the four sources vary widely among samples. Net CO2 consumption rates by silicate weathering (6-120 × 103 mol/km2/yr) are low and have a relative uncertainty of ∼40%. We extended the inversion model calculation to literature data for rivers draining orogenic zones worldwide. The Ganges-Brahmaputra draining the Himalayan front has higher CO2 consumption rates (110-570 × 103 mol/km2/yr) and more radiogenic 87Sr/86Sr (0.715-1.24) than the Upper Huang He, but the rivers at higher latitudes are similar to or lower than the Upper Huang He in CO2 uptake by silicate weathering. In these orogenic zones, silicate weathering rates are only weakly coupled with temperature and become independent of runoff above ∼800 mm/yr.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号