首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4296篇
  免费   146篇
  国内免费   92篇
测绘学   157篇
大气科学   295篇
地球物理   1115篇
地质学   1516篇
海洋学   376篇
天文学   694篇
综合类   21篇
自然地理   360篇
  2022年   30篇
  2021年   48篇
  2020年   47篇
  2019年   63篇
  2018年   85篇
  2017年   104篇
  2016年   119篇
  2015年   110篇
  2014年   136篇
  2013年   258篇
  2012年   130篇
  2011年   231篇
  2010年   164篇
  2009年   225篇
  2008年   237篇
  2007年   208篇
  2006年   191篇
  2005年   171篇
  2004年   136篇
  2003年   162篇
  2002年   136篇
  2001年   84篇
  2000年   87篇
  1999年   61篇
  1998年   69篇
  1997年   56篇
  1996年   65篇
  1995年   52篇
  1994年   55篇
  1993年   42篇
  1992年   48篇
  1991年   42篇
  1990年   35篇
  1989年   37篇
  1988年   37篇
  1987年   40篇
  1986年   44篇
  1985年   57篇
  1984年   47篇
  1983年   50篇
  1982年   52篇
  1981年   57篇
  1980年   48篇
  1979年   39篇
  1978年   47篇
  1977年   28篇
  1976年   29篇
  1975年   24篇
  1974年   31篇
  1973年   29篇
排序方式: 共有4534条查询结果,搜索用时 15 毫秒
921.
922.
A combination of beta spiral and minimum length inverse methods, along with a compilation of historical and recent high-resolution CTD data, are used to produce a quantitative estimate of the subthermocline circulation in Cascadia Basin. Flow in the North Pacific Deep Water, from 900-1900 m, is characterized by a basin-scale anticyclonic gyre. Below 2000 m, two water masses are present within the basin interior, distinguished by different potential temperature-salinity lines. These water masses, referred to as Cascadia Basin Bottom Water (CBBW) and Cascadia Basin Deep Water (CBDW), are separated by a transition zone at about 2400 m depth. Below the depth where it freely communicates with the broader North Pacific, Cascadia Basin is renewed by northward flow through deep gaps in the Blanco Fracture Zone that feeds the lower limb of a vertical circulation cell within the CBBW. Lower CBBW gradually warms and returns to the south at lighter density. Isopycnal layer renewal times, based on combined lateral and diapycnal advective fluxes, increase upwards from the bottom. The densest layer, existing in the southeast quadrant of the basin below 2850 m, has an advective flushing time of 0.6 years. The total volume flushing time for the entire CBBW is 2.4 years, corresponding to an average water parcel residence time of 4.7 years. Geothermal heating at the Cascadia Basin seafloor produces a characteristic bottom-intensified temperature anomaly and plays an important role in the conversion of cold bottom water to lighter density within the CBBW. Although covering only about 0.05% of the global seafloor, the combined effects of bottom heat flux and diapycnal mixing within Cascadia Basin provide about 2-3% of the total required global input to the upward branch of the global thermohaline circulation.  相似文献   
923.
Accurate and computationally-efficient modeling of stratified mixing processes are of paramount importance in both coastal and large-scale ocean circulation. In this study, our main objective is to investigate the feasibility and accuracy of large eddy simulation (LES) as a possible tool to study small-scale oceanic processes. To this end, LES is evaluated in a 3D lock-exchange problem, which contains shear-driven mixing, internal waves, interactions with boundaries and convective motions, while having a simple domain, initial and boundary conditions, and forcing.Two general classes of LES models are tested, namely eddy viscosity (EV) models based on constant–coefficient and dynamic Smagorinsky models, and an approximate deconvolution (AD) model. By noting that the dynamic Smagorinsky and AD models have different strengths in that the former is good in providing appropriate dissipation while the latter in preserving the detail of coherent structures on coarse resolution meshes, a hybrid approach combining EV and AD models is also evaluated. A direct numerical simulation (DNS) is performed as the benchmark solution, and all LES models are tested on three coarse meshes. The main measure of mixing is taken as the temporal evolution of background potential energy.It is found that constant-coefficient Smagorinsky models can only provide a marginal improvement over under-resolved simulations, while both dynamic Smagorinsky and AD models lead to significant improvements in mixing accuracy. The primary accomplishment of this study is that it is shown that the hybrid approach attains the best agreement with the mixing curve from DNS, while being computationally approximately a thousand times faster.  相似文献   
924.
Although the recruitment of larvae and juveniles of marine fishes into estuaries has been well documented, little is known about the factors governing the immigration of estuary-associated marine fishes into estuaries. Fishes have a well-developed sense of smell and it has been suggested by several workers that olfactory cues of freshwater or estuarine origin serve as stimuli, attracting larvae and juveniles of estuary-associated species into estuaries. Attraction of postflexion Rhabdosargus holubi larvae to estuary and river water from the Kowie estuarine system, South Africa, was measured using a rectangular choice chamber. In experiments, conducted during peak recruitment periods, larvae selected estuary and river water with a significantly higher frequency than sea water. This study, the first to assess the possible role of olfaction in the recruitment process of an estuary-associated marine fish species, demonstrates that larvae are able to recognise water from different origins, probably based on odour.  相似文献   
925.
Stormwater plumes in the southern California coastal ocean were detected by MODIS-Aqua satellite imagery and compared to ship-based data on surface salinity and fecal indicator bacterial (FIB) counts collected during the Bight'03 Regional Water Quality Program surveys in February–March of 2004 and 2005. MODIS imagery was processed using a combined near-infrared/shortwave-infrared (NIR-SWIR) atmospheric correction method, which substantially improved normalized water-leaving radiation (nLw) optical spectra in coastal waters with high turbidity. Plumes were detected using a minimum-distance supervised classification method based on nLw spectra averaged within the training areas, defined as circular zones of 1.5–5.0-km radii around field stations with a surface salinity of S < 32.0 (“plume”) and S > 33.0 (“ocean”). The plume optical signatures (i.e., the nLw differences between “plume” and “ocean”) were most evident during the first 2 days after the rainstorms. To assess the accuracy of plume detection, stations were classified into “plume” and “ocean” using two criteria: (1) “plume” included the stations with salinity below a certain threshold estimated from the maximum accuracy of plume detection; and (2) FIB counts in “plume” exceeded the California State Water Board standards. The salinity threshold between “plume” and “ocean” was estimated as 32.2. The total accuracy of plume detection in terms of surface salinity was not high (68% on average), seemingly because of imperfect correlation between plume salinity and ocean color. The accuracy of plume detection in terms of FIB exceedances was even lower (64% on average), resulting from low correlation between ocean color and bacterial contamination. Nevertheless, satellite imagery was shown to be a useful tool for the estimation of the extent of potentially polluted plumes, which was hardly achievable by direct sampling methods (in particular, because the grids of ship-based stations covered only small parts of the plumes detected via synoptic MODIS imagery). In most southern California coastal areas, the zones of bacterial contamination were much smaller than the areas of turbid plumes; an exception was the plume of the Tijuana River, where the zone of bacterial contamination was comparable with the zone of plume detected by ocean color.  相似文献   
926.
A new process-based approach is introduced for a more efficient computation of the overflow-induced growth of an erosional channel in a non-cohesive homogeneous narrow landmass such as the breach growth in a sand-dike. The approach is easy to incorporate in a 1D/2DV morphodynamic model to compute the channel growth both vertically and laterally.  相似文献   
927.
The Cariaco basin, located ∼40 km off the central part of the coast of Venezuela, is the largest (∼4000 km2) and bathymetrically deepest (1400 m BSL) Neogene fault-bounded basin within the right-lateral strike-slip plate boundary zone that separates the Caribbean and South American plates. Using subsurface geophysical data, we test two previously proposed tectonic models for the age, distribution and nature of east-west-striking, strike-slip faults, and basin-forming mechanism for the two main depocenters of the Cariaco basin. The earliest interpretation for the opening of the twin Cariaco depocenters by Schubert (1982) proposes that both depocenters formed synchronously by extension along transverse (north-south) normal faults at a ∼30-km-wide rhomboidally-shaped pull-apart basin between the right-lateral, east-west-striking, and parallel San Sebastian and El Pilar fault zones. A later model by Ben-Avraham and Zoback (1992) proposes that both depocenters formed synchronously by a process of ”transform-normal parallel extension”, or rifting in a north-south direction orthogonal to the east-west-striking and parallel strike-slip faults.We use more than 4000 km of 2D single- and multi-channel seismic data tied to 11 wells to map 5 tectono-stratigraphic sequences and to produce a series of structural and isopach maps showing how the faults that controlled both Cariaco depocenters evolved from Paleogene to the present. Comparison of fault and isopach maps for dated horizons from Paleogene to late Neogene in age show three main phases in basin development: 1) from middle Miocene to Pliocene, the West Cariaco basin formed as a rhomboidally-shaped pull-apart at a 30-km-wide stepover between the northern branch of the San Sebastian fault and the El Pilar fault zone; 2) during the early Pliocene, a new strike-slip fault transected the West Cariaco basin (southern branch of the San Sebastian fault) and caused extension to cease; and 3) during the early Pliocene to recent, a “lazy-Z” shaped pull-apart formed along the curving connection between the southern branch of the San Sebastian and El Pilar fault zones.  相似文献   
928.
929.
Benthic foraminiferal shell geochemistry has been extensively used to develop paleoceanographic tracers. Many of these proxies are sensitive to the geochemical conditions of the microhabitats selected by particular foraminiferal species. Understanding these microhabitats, then, is essential for proper interpretation of the proxies. A simple, broadly accepted, view is that foraminiferal species’ habitats are vertically stratified in the sediments due to general pore-water chemical gradients, which develop in response to the seabed organic carbon flux. Species are categorized into epifaunal, shallow infaunal and deep infaunal habitats, and are supposed to acquire the geochemical characteristics of these. However, this view is at odds with species’ distributional data and foraminiferal geochemical properties. We present an alternate model in which foraminifera select for habitats within the bio-irrigation system of the sediments created by the activities of macro-/meio-fauna. Our distributional and geochemical data indicate that foraminiferal species seek particular biotic associations and geochemical conditions within the complex bio-architecture of the sediments and are not tied to particular sediment depths, or the general pore-water chemistry of their apparent habitation zone. Instead, foraminifera inhabit micro-environments with steep oxic to anoxic gradients. This might account for disparities among geochemical tracers.  相似文献   
930.
We examined the geographic extent of petroleum hydrocarbon contamination in sediment, seawater, biota, and seafood during/after the BP/Deepwater Horizon Oil Spill (April 20–July 15, 2010; 28.736667°N, −88.386944°W). TPH, PAHs, and 12 compound classes were examined, particularly C1-benzo(a)anthracenes/chrysenes, C-2-/C-4-phenanthrenes/anthracenes, and C3-naphthalenes. Sediment TPH, PAHs, and all classes peaked near Pensacola, Florida, and Galveston, Texas. Seawater TPH peaked off Pensacola; all of the above classes peaked off the Mississippi River, Louisiana and Galveston. Biota TPH and PAHs peaked near the Mississippi River; C-3 napthalenes peaked near the spill site. Seafood TPH peaked near the spill site, with PAHs and all classes peaking near Pensacola. We recommend that oil concentrations continued to be monitored in these media well after the spill has ceased to assist in defining re-opening dates for fisheries; closures should be maintained until hydrocarbon levels are deemed within appropriate limits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号