首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20680篇
  免费   177篇
  国内免费   709篇
测绘学   1153篇
大气科学   1676篇
地球物理   3921篇
地质学   9590篇
海洋学   887篇
天文学   1493篇
综合类   1754篇
自然地理   1092篇
  2024年   2篇
  2023年   10篇
  2022年   5篇
  2021年   28篇
  2020年   24篇
  2019年   26篇
  2018年   3823篇
  2017年   3260篇
  2016年   2124篇
  2015年   236篇
  2014年   117篇
  2013年   100篇
  2012年   824篇
  2011年   2255篇
  2010年   1619篇
  2009年   1874篇
  2008年   1583篇
  2007年   1947篇
  2006年   85篇
  2005年   203篇
  2004年   359篇
  2003年   369篇
  2002年   243篇
  2001年   58篇
  2000年   58篇
  1999年   32篇
  1998年   34篇
  1997年   13篇
  1996年   22篇
  1995年   19篇
  1994年   11篇
  1992年   18篇
  1991年   6篇
  1990年   6篇
  1989年   8篇
  1988年   8篇
  1987年   10篇
  1986年   6篇
  1985年   10篇
  1984年   14篇
  1983年   11篇
  1982年   12篇
  1981年   27篇
  1980年   28篇
  1979年   4篇
  1978年   5篇
  1977年   7篇
  1976年   10篇
  1975年   4篇
  1973年   2篇
排序方式: 共有10000条查询结果,搜索用时 562 毫秒
851.
Spinifex-textured sills (i.e., veins) characterized by komatiitic magmas that have intruded their own volcanic-piles have long been recognized. For instance, in the early 1970s, Pyke and coworkers, in their classic work at Pyke Hill in Munro Township, noted that not all spinifex-bearing ultramafic rocks formed as lava flows, rather some were clearly emplaced as small dikes and sills. Several hypotheses have been proposed to explain spinifex-textured sills: intrusion into a cold host, filter pressing, or drainage of residual liquid. However, these do not satisfactorily explain the phenomenon. Field and petrographic observations at Pyke Hill and Serpentine Mountain demonstrate that spinifex-bearing komatiite sills and dikes were emplaced during channel inflation processes when new magma was intruded into a cooler, semi-consolidated but permeable cumulate material. Komatiitic liquids were intruded into the olivine cumulate rocks near the boundary between the spinifex and the cumulate zones of well-organized to organized komatiite flows. Spinifex-textured sills are generally tabular in morphology, stacked one above another, with curviplanar contacts sub-parallel to stratigraphy. Some sills exhibit complex digitated apophyses. Thinner sills typically have a random olivine spinifex texture similar, though generally composed of coarser crystals, to that of komatiite lava flows. Thicker sills exhibit more complex organization of their constituent crystals characterized by zones of random olivine spinifex, overlying zones of organized coarse spinifex crystals similar to those found in lava flows. They have striking coarse dendritic spinifex zones composed of very large olivine crystals, up to several centimetres long and up to 1 cm wide that are not observed in lava flows. Typically, at the sill margins, the cumulate material of the host flow is composed of euhedral to subhedral olivine crystals that are larger than those distal to the contact. Many of these margin-crystals have either concentric overgrowth shells or dendritic olivine overgrowths that grew from the cumulate-sill contact toward the sill interior. The dendrites grew on pre-existing olivine cumulate at the contact in response to a sharp temperature gradient imposed by the intrusion of hot material, whereas the concentric overgrowths formed as new melt percolated into the unconsolidated groundmass of the host-flow cumulate material. Spinifex-textured sills and dikes occur in well-organized to organized flows that are interpreted to have formed by “breakouts” above and peripheral to lava pathways (channels/conduits) as a result of inflation that accompanied voluminous komatiitic eruptions responsible for the construction and channelization of komatiitic flow fields. The spinifex-textured dikes and sills represent komatiitic lava that was originally emplaced into the channel roof during periods of episodic inflation that resulted in lava breakouts and was subsequently trapped in the “roof rocks” during periods of channel deflation. Accordingly, the occurrence of spinifex-textured sills and dikes may indicate proximity to, and aid in the identification and delineation of lava channel-ways that could potentially host Ni–Cu–(PGE) mineralization within komatiitic lava flow-fields.  相似文献   
852.
The sensitivity of the global atmospheric and oceanic response to sea surface temperature anomaly (SSTA) throughout the South China Sea (SCS) is investigated using the Fast Ocean-Atmosphere Model (FOAM). Forced by a warming SST, the experiment explicitly demonstrates that the responses of surface air temperature (SAT) and SST exhibit positive anomalous center over SCS and negative anomalous center over the Northern Pacific Ocean (NPO). The atmospheric response to the warm SST anomalies is characterized by a barotropical anomaly in middle-latitude, leading to a weak subtropical high in summer and a weak Aleutian low in winter. Accordingly, Indian monsoon and eastern Asian monsoon strengthen in summer but weaken in winter as a result of wind convergence owing to the warm SST. It is worth noting that the abnormal signals propagate poleward and eastward away in the form of Rossby Waves from the forcing region, which induces high pressure anomaly. Owing to action of the wind-driven circulation, an anomalous anti-cyclonic circulation is induced with a primary southward current in the upper ocean. An obvious cooling appears over the North Pacific, which can be explained by anomalous meridional cold advection and mixing as shown in the analysises of heat budget and other factors that affect SST.  相似文献   
853.
Nine vertical electrical soundings of Schlumberger configuration were measured with AB/2 = 1–500 m. Manual and computerized interpretation were done to detect the subsurface stratigraphy of the study area. The results show that the subsurface section consists of alternated units of limestone, clay, marly limestone and dolomitic limestone and the thickness of clay unit ranged from 10 to 40 m. Nine dipole–dipole sections have also been constructed to give a clearer picture of the subsurface at the study area. The length of each dipole–dipole section is 235 m, with a electrode spacing ranging between 5 and 25 m. The Res2Dinv software was used for processing and interpretation of field data. The dipole–dipole sections at the upper plateau display high resistivity values at most parts of the plateau. Twelve shallow seismic refraction profiles are measured at selected locations for the dipole sections to define the interface between the fractured limestone and the upper surface of the clay layer. Each profile consists of 24 geophones with a geophone spacing of 2–3 m. Interpretation of seismic data indicates that the surface layer of the upper plateau consists of fractured limestone with a velocity range of 1.16–1.56 km/s and another layer of compacted clay with a velocity range of 1.38–1.88 km/s. Furthermore, the surface layer of the middle plateau consists of marl and marly limestone with a velocity about 2.1 km/s and its underlying layer consists of massive limestone with a velocity of 4.94 km/s.  相似文献   
854.
We investigated whether within wetland environmental conditions or surrounding land cover measured at multiple scales were more influential in structuring regional vegetation patterns in estuarine tidal wetlands in the Pacific Northwest, USA. Surrounding land cover was characterized at the 100, 250, and 1,000 m, and watershed buffer scales. Vegetation communities were characterized by high species richness, lack of monotypic zonation, and paucity of invasive species. The number of species per site ranged between 4 and 20 (mean?±?standard deviation?=?10.2?±?3.1). Sites supported a high richness (mean richness of native species 8.7?±?2.8) and abundance of native macrophytes (mean relative abundance 85 %?±?19 %). Vegetation assemblages were dominated by a mix of grasses, sedges, and herbs with Sarcocornia pacifica and Distichlis spicata being common at sites in the oceanic zone of the estuary and Carex lyngbyei and Agrostis stolonifera being common at the fresher sites throughout the study area. The vegetation community was most strongly correlated with salinity and land cover within close proximity to the study site and less so with land cover variables at the watershed scale. Total species richness and richness of native species were negatively correlated with the amount of wetland in the buffer at all scales, while abundance of invasive species was significantly correlated to within wetland factors, including salinity and dissolved phosphorus concentrations. Landscape factors related to anthropogenic disturbances were only important at the 100-m buffer scale, with anthropogenic disturbances further from the wetland not being influential in shaping the vegetation assemblage. Our research suggests that the traditional paradigms of tidal wetland vegetation structure and environmental determinants developed in east coast US tidal wetlands might not hold true for Pacific Northwest wetlands due to their unique chemical and physical factors, necessitating further detailed study of these systems.  相似文献   
855.
Abstract— Quantifying the peak temperatures achieved during metamorphism is critical for understanding the thermal histories of ordinary chondrite parent bodies. Various geothermometers have been used to estimate equilibration temperatures for chondrites of the highest metamorphic grade (type 6), but results are inconsistent and span hundreds of degrees. Because different geothermometers and calibration models were used with different meteorites, it is unclear whether variations in peak temperatures represent actual ranges of metamorphic conditions within type 6 chondrites or differences in model calibrations. We addressed this problem by performing twopyroxene geothermometry, using QUILF95, on the same type 6 chondrites for which peak temperatures were estimated using the plagioclase geothermometer (Nakamuta and Motomura 1999). We also calculated temperatures for published pyroxene analyses from other type 6 H, L, and LL chondrites to determine the most representative peak metamorphic temperatures for ordinary chondrites. Pyroxenes record a narrow, overlapping range of temperatures in H6 (865–926 °C), L6 (812–934 °C), and LL6 (874–945 °C) chondrites. Plagioclase temperature estimates are 96–179 °C lower than pyroxenes in the same type 6 meteorites. Plagioclase estimates may not reflect peak metamorphic temperatures because chondrule glass probably recrystallized to plagioclase prior to reaching the metamorphic peak. The average temperature for H, L, and LL chondrites (~900 °C), which agrees with previously published oxygen isotope geothermometry, is at least 50 °C lower than the peak temperatures used in current asteroid thermal evolution models. This difference may require minor adjustments to thermal model calculations.  相似文献   
856.
This study investigates the sensitivity of the one-way nested PRECIS regional climate model (RCM) to domain size for the Caribbean region. Simulated regional rainfall patterns from experiments using three domains with horizontal resolution of 50 km are compared with ERA reanalysis and observed datasets to determine if there is an optimal RCM configuration with respect to domain size and the ability to reproduce important observed climate features in the Caribbean. Results are presented for the early wet season (May–July) and late wet season (August–October). There is a relative insensitivity to domain size for simulating some important features of the regional circulation and key rainfall characteristics e.g. the Caribbean low level jet and the mid summer drought (MSD). The downscaled precipitation has a systematically negative precipitation bias, even when the domain was extended to the African coast to better represent circulation associated with easterly waves and tropical cyclones. The implications for optimizing modelling efforts within resource-limited regions like the Caribbean are discussed especially in the context of the region’s participation in global initiatives such as CORDEX.  相似文献   
857.
Quantitative sinkhole hazard assessments in karst areas allow calculation of the potential sinkhole risk and the performance of cost-benefit analyses. These estimations are of practical interest for planning, engineering, and insurance purposes. The sinkhole hazard assessments should include two components: the probability of occurrence of sinkholes (sinkholes/km2 year) and the severity of the sinkholes, which mainly refers to the subsidence mechanisms (progressive passive bending or catastrophic collapse) and the size of the sinkholes at the time of formation; a critical engineering design parameter. This requires the compilation of an exhaustive database on recent sinkholes, including information on the: (1) location, (2) chronology (precise date or age range), (3) size, and (4) subsidence mechanisms and rate. This work presents a hazard assessment from an alluvial evaporite karst area (0.81 km2) located in the periphery of the city of Zaragoza (Ebro River valley, NE Spain). Five sinkholes and four locations with features attributable to karstic subsidence where identified in an initial investigation phase providing a preliminary probability of occurrence of 0.14 sinkholes/km2 year (11.34% in annual probability). A trenching program conducted in a subsequent investigation phase allowed us to rule out the four probable sinkholes, reducing the probability of occurrence to 0.079 sinkholes/km2 year (6.4% in annual probability). The information on the severity indicates that collapse sinkholes 10–15 m in diameter may occur in the area. A detailed study of the deposits and deformational structures exposed by trenching in one of the sinkholes allowed us to infer a modern collapse sinkhole approximately 12 m in diameter and with a vertical throw of 8 m. This collapse structure is superimposed on a subsidence sinkhole around 80 m across that records at least 1.7 m of synsedimentary subsidence. Trenching, in combination with dating techniques, is proposed as a useful methodology to elucidate the origin of depressions with uncertain diagnosis and to gather practical information with predictive utility about particular sinkholes in alluvial karst settings: precise location, subsidence mechanisms and magnitude, and timing and rate of the subsidence episodes.  相似文献   
858.
To study the seismogeny process or the precursory behavior of the 1976 M S=7.0 Lijiang earthquake, we analyze the repeat gravity data with high precision from the Western Yunnan Earthquake Prediction Experiment Area (WYEPEA) and the related results of geology and geophysics survey in this paper. Considering the gross errors caused by observation data and model difference, we have firstly inverted the slip distribution of the main active faults with time based on the robust Bayesian least squares estimation and multi-fault dislocation model. The results show that the slip changes of the faults with time from 1990 to 1997 obviously reflect the preparation process of the Lijiang earthquake. The images of main precursor mode have the characteristic of main shock-after shock type, which is agreement to the model of coupling movement between crust density and crust deformation (DD mode of coupling movement).  相似文献   
859.
In a recent paper published in Journal of Mountain Science, Malanson (2017) explored variance changes in Rocky Mountains tree-ring chronologies. This commentary points out some methodological issues related to systematic bias in evolving tree-ring chronology variance and suggests that analyzing the slopes of linear regression lines may be suboptimal for identifying temporal changes in variance. The journal editor invited the original article’s authors Dr. Malandson to respond to the comments. Thus Dr. Malandson’s response is attached behind the comments.  相似文献   
860.
Unlike the limit equilibrium method (LEM), with which only the global safety factor of the landslide can be calculated, a local safety factor (LSF) method is proposed to evaluate the stability of different sections of a landslide in this paper. Based on three-dimensional (3D) numerical simulation results, the local safety factor is defined as the ratio of the shear strength of the soil at an element on the slip zone to the shear stress parallel to the sliding direction at that element. The global safety factor of the landslide is defined as the weighted average of all local safety factors based on the area of the slip surface. Some example analyses show that the results computed by the LSF method agree well with those calculated by the General Limit Equilibrium (GLE) method in two-dimensional (2D) models and the distribution of the LSF in the 3D slip zone is consistent with that indicated by the observed deformation pattern of an actual landslide in China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号