首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   16篇
  国内免费   2篇
测绘学   2篇
大气科学   22篇
地球物理   110篇
地质学   113篇
海洋学   26篇
天文学   36篇
综合类   2篇
自然地理   23篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   5篇
  2018年   15篇
  2017年   10篇
  2016年   13篇
  2015年   19篇
  2014年   19篇
  2013年   14篇
  2012年   19篇
  2011年   18篇
  2010年   20篇
  2009年   18篇
  2008年   27篇
  2007年   7篇
  2006年   6篇
  2005年   10篇
  2004年   16篇
  2003年   9篇
  2002年   11篇
  2001年   4篇
  2000年   10篇
  1999年   4篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   5篇
  1992年   5篇
  1991年   3篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有334条查询结果,搜索用时 31 毫秒
71.
Many morphological elements in Cuba's landscape (e.g. marine terraces, tidal notches) demonstrate that coastal uplift has taken place, but the rate at which this occurs is not known. Carbonate phreatic overgrowths on speleothems have been found in a cave in Central North Cuba, ~1 km from the present coastline at 16 m asl. They form exceptional and unique mushroom‐shaped speleothems and balconies decorating the walls of the rooms. These phreatic overgrowths on speleothems (POS) formed at the oscillating air–water interface in sea‐level controlled anchialine lakes. U/Th dating of these overgrowths suggests ages that are compatible with the Marine Isotope Stage 5e (i.e. 130–115 ka). These POS have fixed this sea‐level highstand and demonstrate that this part of Cuba has been subjected to a much lower uplift rate than previously reported, that is, less than 0.1 mm/year since the last interglacial.  相似文献   
72.
73.
The Early Jurassic dolomitized carbonates in the Venetian Alp, represent a surface analogue of the hydrocarbon exploration targets in Adriatic offshore and Po Plain, Italy. Dolomitization affected the carbonate platform of Monte Zugna Formation (Lower Jurassic) and the Neptunian dikes breccia in the pelagic Maiolica Formation (Uppermost Jurassic–Lower Cretaceous) improving the poro-perm characteristics. Petrography, stable isotope, strontium isotope ratio, trace element and fluid inclusion analyses were carried out on samples from the Monte Grappa Anticline, which is the direct analogue for subsurface. The petrographic analyses showed a first pervasive, replacement dolomitization phase (D1) followed by volumetrically less important dolomite cement precipitation phases (D2, D3, DS). The same, quite wide range of oxygen isotope (?9 to ?2‰ V-PDB) is observed in all dolomite types. The δ13C range is in the positive field of marine derived carbonate (from +0.5 to +3.2‰ PDB). The trace element analysis showed a slight enrichment in Fe and Mn contents in the Monte Zugna dolostones with respect the original limestone. The same dolomite precipitation temperature (up to 105 °C Th) was observed in the replacement and cement dolomites, suggesting a unique dolomitization event. This temperature, largely higher than the maximum burial temperature (about 50 °C), supports a hydrothermal origin of the dolomitizing fluids, which had a seawater to brackish composition. The data collected suggest a hydrothermal dolomitization occurring during to the South Alpine thrusting according to the “squeegee model”. The interpretation is consistent with the dolomitization model proposed for similar Jurassic successions in the Central Southern Alps. This study indicates that the deformed foreland and thrust fold belts carbonates in Po Plain and Adriatic offshore are suitable to be dolomitized, and therefore reflect an efficient hydrocarbon exploration play.  相似文献   
74.
The barotropic, quasi-geostrophic vorticity equation describing large scale, rotating flows over zonal relief supports nonlinear permanent form solutions, namely nonlinear topographic Rossby waves. Through an analytical theory, these solutions have been shown to be neutrally stable to infinitesimal perturbations.Numerical algorithms, which necessarily truncate the infinite number of degrees of freedom of any continuum model to a finite number, are capable of reproducing the numerical equivalent of these form-preserving solutions. Moreover, these numerical solutions are shown to preserve their shape throughout the numerical experiment not only in the limit of small amplitude, but also for high amplitude (Rossby number → O(1)).Through numerical simulation, the stability analysis is carried far beyond the analytical limit of infinitesimal perturbations. The solutions maintain their stability in agreement with the analytical theory, up to perturbations having intensities almost of the same order as the solutions themselves. For higher-amplitude perturbations, the solutions break up and typical turbulent behavior ensues. The passage from wave-like to turbulent behavior, upon surpassing a critical perturbation value, can be observed in the sudden loss of phase locking of the permanent solution Fourier modes.  相似文献   
75.
Cores from five high alpine basins in the northern San Juan Mountains show several fluctuations in lithology. Typically, peats are interbedded with coarser clastic sediments or else woody peats alternate with fibrous peat. Twenty 14C dates provide radiometric control. Sediment rates averaged about 2.5 cm/100 yr but varied at the different sites between 1.19 and 50 cm/100 yr. Rates were lower during the middle of the Holocene. Basal radiocarbon dates indicate that these high (ca. 3600 m a.s.l.) northeasterly facing cirques were icefree by 9000 BP. There is some evidence in the cores for a short climatic reversal sometime between 8000 and 7000 BP. A major change occurred in the high basins very close to 5000 BP and thereafter there are several intervals of increased clastic sedimentation which may be related to Neoglacial climatic fluctuations. Analysis of a 2.15 m core near Hurricane Basin indicates significant fluctuation of pollen and macrofossils occurred during the 9000 ± year record. The Picea/Pinus ratios are used to delimit changes in the apparent elevation of the site: the ratios indicate that a short drop of “treeline” occurred about 8000 BP and then remained near present level until about ≥1800 BP when the apparent elevation of the site rose. Macrofossils indicate that spruce was present in the Hurricane Basin (and others) at specific periods and confirms the general results of the Picea/Pinus ratios. The San Juan Mountains do not possess a glacial Neoglacial record but the stratigraphy of these high cirque basins can be used to define glacial stades (cf. Jardine, 1972). The interpreted climatic response record on vegetation and sediment flux has both similarities and differences from other records in the western mountains of North America.  相似文献   
76.
The Campanian Apennines are characterized by the presence of monocline ridges, mainly formed by limestone. During the periods of volcanic activity of the Somma-Vesuvius and Phlegrean Fields, the ridges were mantled with pyroclastic materials in varying thickness. The pyroclastics have been involved in destructive landslides both in historical time and in the recent past (1997, 1998, 1999). The landslides occur following intense and prolonged rainfalls. In some cases, landslides extended up to 4 km into the surrounding lowlands and reached towns, causing severe destruction and over 200 deaths. Generally, the landslides begin as small debris slides that develop into large, shallow debris avalanches or debris flows involving pyroclastic horizons and colluvial soils (0.5–2 m thick) on steep and vegetated slopes, often at the heads of gullies. During motion, the landslide materials eroded vegetation and soils from the slope, so that the moving material volume tended to increase. Then, proceeding towards and beyond the base of the slopes, the phenomena evolved into hyperconcentrated streamflow due to dilution by incorporating water. The results of motion analyses are described. An empirical rheological relationship was used including two principal terms that depend on the total normal stress and on the flow velocity. On this basis, the model has simulated the velocity and duration of debris avalanches and the distribution of the deposits. The selected areas were those of Sarno/Quindici and Cervinara, where a large amount of data is available both on the material properties and geomorphological setting. It was found that the majority of the cases at the two sites can be simulated successfully with only one specific pair of rheologic parameters. This provides the possibility for first-order predictions to be made of the motion of future landslides. Such predictions will be a valuable tool for outlining potential hazard areas and designing remedial measures.  相似文献   
77.
The cataclysmic eruption of Mount St. Helens on May 18, 1980, resulted in a large, north-facing amphitheater, with a steep headwall rising 700 m above the crater floor. In this deeply shaded niche a glacier, here named the Amphitheater glacier, has formed. Tongues of ice-containing crevasses extend from the main ice mass around both the east and the west sides of the lava dome that occupies the center of the crater floor. Aerial photographs taken in September 1996 reveal a small glacier in the southwest portion of the amphitheater containing several crevasses and a bergschrund-like feature at its head. The extent of the glacier at this time is probably about 0.1 km2. By September 2001, the debris-laden glacier had grown to about 1 km2 in area, with a maximum thickness of about 200 m, and contained an estimated 120,000,000 m3 of ice and rock debris. Approximately one-third of the volume of the glacier is thought to be rock debris derived mainly from rock avalanches from the surrounding amphitheater walls. The newly formed Amphitheater glacier is not only the largest glacier on Mount St. Helens but its aerial extent exceeds that of all other remaining glaciers combined.  相似文献   
78.
The Vema Transverse Ridge (VTR) is a prominent, long and narrow topographic anomaly that runs for over 300 km along a sea floor spreading flow line south of the Vema transform at 11° N in the Atlantic. It rises abruptly about 140 km from the axis of the Mid-Atlantic Ridge (MAR) in 10 Myr old crust and runs continuously up to 25 Myr old crust. It reaches over 3 km above the predicted lithospheric thermal contraction level. It is absent in crust younger than 10 Myr; thus, the uplift of the VTR must have ended roughly 10 Ma. The VTR is interpreted as the exposed edge of a flexured and uplifted slab of oceanic lithosphere that was generated at an 80 km long MAR segment. Based on satellite gravimetry imagery this MAR segment was born roughly 50 Ma and increased its length at an average rate of 1.6 mm/yr. Multibeam data show that the MAR-parallel sea floor fabric south of the VTR shifts its orientation by 5° to 10° clockwise in 11–12 Myr old crust, indicating a change at that time of the orientation of the MAR axis and of the position of the Euler rotation pole. This change caused extension normal to the transform, followed between 12 and 10 Ma by flexure of the edge of the lithospheric slab, uplift of the VTR at a rate of 2 to 4 mm/yr, and exposure of a lithospheric section (Vema Lithospheric Section or VLS) at the northern edge of the slab, parallel to the Vema transform. Ages of pelagic carbonates encrusting ultramafic rocks sampled at the base of the VLS at different distances from the MAR axis suggest that the entire VTR rose vertically as a single block within the active transform offset. A 50 km long portion of the crest of the VTR rose above sea level, subsided, was truncated at sea level and covered by a carbonate platform. Subaerial and submarine erosion has gradually removed material from the top of the VTR and has modified its slopes. Spreading half rate of the crust south of the transform decreased from 17.2 mm/yr between 26 and 19 Ma to 16.9 mm/yr between 19 and 10 Ma, to 13.6 mm/yr from 10 Ma to present. The slowing down of spreading occurred close in time to the change in ridge/transform geometry, suggesting that the two events are related. A numerical model relates lithospheric flexure to extension normal to the transform, suggesting that the extent of the uplift depends on the thickness of the brittle layer, consistent with the observed greater uplift of the older lithosphere along the VTR.  相似文献   
79.
Bulk atmospheric deposition of major cations (Na, K, Ca, Mg) and anions (Cl, F, SO4) were measured at 15 sites around an active volcano, Mount Etna, from 2001 to 2003. Their composition indicates several natural sources, among which deposition of plume-derived volcanogenic gas compounds is prevalent for F, Cl and S. Plume-derived acidic compounds are also responsible for the prevailing acidic composition of the samples collected on the summit of the volcano (pH in the 2.45–5.57 range). Cation species have complex origin, including deposition of plume volcanogenic ash and aerosols and soil-dust wind re-suspension of either volcanic or carbonate sedimentary rocks. Variation of the deposition rates during the March 2001–March 2003 period, coupled with previous measurements from 1997 to 2000 (Appl Geochem 16:985–1000, 2001), were compared with the variation of SO2 flux, volcanic activity and rainfall. The deposition rate was mainly controlled by rainfall. Commonly, about 0.1–0.9% of HF, HCl and SO2 emitted by the summit crater's plume were deposited around the volcano. We estimate that ∼2 Gg of volcanogenic sulphur were deposited over the Etnean area during the 2002–2003 flank eruption, at an average rate of ∼24 Mg day−1 which is two orders of magnitude higher than that typical of quiescent degassing phases.  相似文献   
80.
We exploit observations at 1.25 mm with the ESO–SEST telescope of a southern galaxy sample, selected from the IRAS PSC and complete to S 60=2 Jy, to derive the FIR and mm luminosity functions and the conditional probability distributions of FIR and mm luminosity of galaxies. The reliability of these estimates is ensured by the good observed correlation of the far-infrared and mm emissions. This detailed knowledge of the millimetric properties of galaxies is used to simulate the extragalactic sub-mm sky (background intensity, small-scale anisotropy signals and discrete source statistics), which is the target of a variety of ground-based and space observatories. We find, in particular, that a recent tentative detection of a sub-mm background would require, if confirmed, strong evolution with cosmic time of the galaxy long-wavelength emissivity. We finally discuss ways to test such evolution with present and forthcoming facilities: while emphasizing the difficulty of achieving this with large mm telescopes on the ground (because of the poor atmospheric conditions of current sub-mm sites), we mention an interesting opportunity with the long-wavelength camera on ISO . Preliminary results of deep surveys, both from space and from the ground, seem indeed to require excess emission in the past by dusty galaxies with respect to no-evolution predictions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号