首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   3篇
  国内免费   1篇
测绘学   16篇
大气科学   2篇
地球物理   10篇
地质学   34篇
天文学   34篇
综合类   2篇
自然地理   3篇
  2023年   1篇
  2021年   4篇
  2020年   5篇
  2019年   3篇
  2018年   5篇
  2017年   9篇
  2016年   10篇
  2015年   4篇
  2014年   6篇
  2013年   9篇
  2012年   6篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1994年   1篇
  1991年   1篇
排序方式: 共有101条查询结果,搜索用时 62 毫秒
11.
Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpur districts of Himachal Pradesh has been done with solid state alpha track detectors, LR-115 type-II plastic track detectors. The radon exhalation rate for the soil samples varies from 39.1 to 91.2 mBq kg?1 h?1 with a mean value 59.7 mBq kg?1 h?1. Also the radium concentration of the studied area is found and it varies from 30.6 to 51.9 Bq kg?1 with a mean value 41.6 Bq kg?1. The exhalation rate for the building material samples varies from 40.72 (sandstone) to 81.40 mBq kg?1 h?1 (granite) with a mean value of 59.94 mBq kg?1 h?1.  相似文献   
12.
Indoor navigation is important for various applications such as disaster management, building modeling, safety analysis etc. In the last decade, indoor environment has been a focus of wide research that includes development of indoor data acquisition techniques, 3D data modeling and indoor navigation. In this research, an automated method for 3D modeling of indoor navigation network has been presented. 3D indoor navigation modeling requires a valid 3D model that can be represented as a cell complex: a model without any gap or intersection such that two cells (e.g. room, corridor) perfectly touch each other. This research investigates an automated method for 3D modeling of indoor navigation network using a geometrical model of indoor building environment. In order to reduce time and cost of surveying process, Trimble LaserAce 1000 laser rangefinder was used to acquire indoor building data which led to the acquisition of an inaccurate geometry of building. The connection between surveying benchmarks was established using Delaunay triangulation. Dijkstra algorithm was used to find shortest path in between building floors. The modeling results were evaluated against an accurate geometry of indoor building environment which was acquired using highly-accurate Trimble M3 total station. This research intends to investigate and propose a novel method of topological navigation network modeling with a less accurate geometrical model to overcome the need of required an accurate geometrical model. To control the uncertainty of the calibration and of the reconstruction of the building from the measurements, interval analysis and homotopy continuation will be investigated in the near future.  相似文献   
13.
Micromorphology has important application in earth surface process and landform studies particularly in alluvial settings such as the Indo‐Gangetic Plains (IGP) with different geomorphic surfaces to identify climatic changes and neotectonic events and their influence on pedogenesis. The soils of the IGP extending from arid upland in the west to per humid deltaic plains in the east developed on five geomorphic surfaces namely QIG1 to QIG5 originating during the last 13.5 ka. Four soil‐geomorphic systems across the entire IGP are identified as: (i) the western Yamuna Plains/Uplands, (ii) the Yamuna‐Ganga Interfluve, (iii) the Ganga‐Ghaghara Interfluve, and (iv) the Deltaic Plains. Thin section analysis of the soils across the four soil‐geomorphic systems provides a record of provenance, mineral weathering, pedogenic processes and polygenesis in IGP. The soils over major parts of the IGP dominantly contain muscovite and quartz and small fraction of highly altered feldspar derived from the Himalayas. However, soils in the western and eastern parts of the IGP contain large volumes of fresh to weakly altered plagioclase and smectitic clay derived from the Indian craton. The soils in western Yamuna Plains/Uplands dominated by QIG2–QIG3 geomorphic surfaces and pedogenic carbonate developed in semi‐arid climate prior to 5 ka. However, soils of the central part of the IGP in the Yamuna‐Ganga Interfluve and Ganga‐Ghaghara Interfluve regions with dominance of QIG4–QIG5 surfaces are polygenetic due to climate change over the last 13.5 ka. The clay pedofeatures formed during earlier wet phase (13.5–11 ka) show degradation, loss of preferred orientation, speckled appearance in contrast with the later phase of wet climate (6.5–4 ka). The soils over the deltaic plains with dominance of vertic features along with clay pedofeatures suggest that illuviation of fine clay is an important pedogenic process even in soils with shrink‐swell characteristics. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
14.
Road network extraction from high resolution satellite images is one of the most important aspects. In the present paper, research experimentation is carried out in order to extract the roads from the high resolution satellite image using image segmentation methods. The segmentation technique is implemented using adaptive global thresholding and morphological operations. Global thresholding segments the image to fix the boundaries. To compute the appropriate threshold values several problems are also analyzed, for instance, the illumination conditions, the different type of pavement material, the presence of objects such as vegetation, vehicles, buildings etc. Image segmentation is performed using morphological approach implemented through dilation of similar boundaries and erosion of dissimilar and irrelevant boundaries decided on the basis of pixel characteristics. The roads are clearly identifiable in the final processed image, which is obtained by superimposing the segmented image over the original enhanced image. The experimental results proved that proposed approach can be used in reliable way for automatic detection of roads from high resolution satellite image. The results can be used in automated map preparation, detection of network in trajectory planning for unmanned aerial vehicles. It also has wide applications in navigation, computer vision as a predictor-corrector algorithm for estimating the road position to simulate dynamic process of road extraction. Although an expert can label road pixels from a given satellite image but this operation is prone to errors. Therefore, an automated system is required to detect the road network in a high resolution satellite image in a robust manner.  相似文献   
15.
In this paper, a quantitative landslide hazard model is presented for transportation lines, with an example for a road and railroad alignment, in parts of Nilgiri hills in southern India. The data required for the hazard assessment were obtained from historical records available for a 21-year period from 1987 to 2007. A total of 901 landslides from cut slopes along the railroad and road alignment were included in the inventory. The landslides were grouped into three magnitude classes based on the landslide type, volume, scar depth, and run-out distance. To calculate landslide hazard, we estimated the total number of individual landslides per kilometer of the (rail) road for different return periods, based on the relationship between past landslides (recorded in our database) and triggering events. These were multiplied by the probability that the landslides belong to a given magnitude class. This gives the hazard for a given return period expressed as the number of landslides of a given magnitude class per kilometer of (rail) road. The relationship between the total number of landslides and the return period was established using a Gumbel distribution model, and the probability of landslide magnitude was obtained from frequency–volume statistics. The results of the analysis indicate that the total number of landslides, from 1- to 50-year return period, varies from 56 to 197 along the railroad and from 14 to 82 along the road. In total, 18 hazard scenarios were generated using the three magnitude classes and six return periods (1, 3, 5, 15, 25, and 50 years). The hazard scenarios derived from the model form the basis for future direct and indirect landslide risk analysis along the transportation lines. The model was validated with landslides that occurred in the year 2009.  相似文献   
16.
The objective of analyzing hazard and risk in an area is to utilize the result in selecting appropriate landslide risk reduction strategies. However, this does not happen always, and most often results of the hazard and risk analysis remain at an academic level. The under or non-utilization of results in pre-disaster planning could be due to several reasons, including difficulties in understanding the scientific content/meaning of the models, and lack of information on the practical significance and utility of the models. In this study, an attempt is made to highlight the uses of hazard and risk information in different landslide risk reduction strategies along a transportation corridor in Nilgiri, India. At first, a quantitative analysis of landslide hazard and risk was made. The obtained information was then incorporated in risk reduction options such as land use zoning, engineering solutions, and emergency preparedness. For emergency preparedness, the perception of the local Nilgiri communities toward landslide risk was evaluated and simplified maps were generated for the benefit and understanding of end users. A rainfall threshold-based early warning system was presented, which could be used in risk awareness programs involving public participation. The use of quantitative risk information in the cost-benefit analysis for the planning of structural measures to protect the road and railway alignments was also highlighted, and examples were shown how the transport organizations could implement these measures. Finally, the study provided examples of the utility of hazard and risk information for spatial planning and zoning, indicating areas where the landslide hazard is too high for planning future developments.  相似文献   
17.
The present study focuses on the hydrogeochemical composition of groundwater in Chhatarpur area with special focus on nitrate and fluoride contamination, considering the fact that groundwater is the only major source of drinking water here. Carbonate and silicate mineral weathering followed by ground water–surface water interactions, ion exchange and anthropogenic activities are mainly responsible for high concentrations of cations and anions in the groundwater in the region. The average concentration of nitrate and fluoride found in 27 samples is 1.08 and 61.4 mg/L, respectively. Nitrate enrichment mainly occurs in areas occupied with intense fertilizer practice in agricultural fields. Since the area is not dominated by industrialization, the possibility of anthropogenic input of fluoride is almost negligible, thus the enrichment of fluoride in groundwater is only possible due to rock–water interaction. The highly alkaline conditions, which favor the fluorite dissolution, are the main process responsible for high concentration of fluoride.  相似文献   
18.
Images of an east-limb flare on 3 November 2010 taken in the 131 Å channel of the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory provide a convincing example of a long current sheet below an erupting plasmoid, as predicted by the standard magnetic reconnection model of eruptive flares. However, the 171 Å and 193 Å channel images hint at an alternative scenario. These images reveal that large-scale waves with velocity greater than 1000 km?s?1 propagated alongside and ahead of the erupting plasmoid. Just south of the plasmoid, the waves coincided with type-II radio emission, and to the north, where the waves propagated along plume-like structures, there was increased decimetric emission. Initially, the cavity around the hot plasmoid expanded. Later, when the erupting plasmoid reached the height of an overlying arcade system, the plasmoid structure changed, and the lower parts of the cavity collapsed inwards. Hot loops appeared alongside and below the erupting plasmoid. We consider a scenario in which the fast waves and the type-II emission were a consequence of a flare blast wave, and the cavity collapse and the hot loops resulted from the break-out of the flux rope through an overlying coronal arcade.  相似文献   
19.
Abstract. Vein type tungsten mineralization at Degana is genetically and spatially associated with the Degana Granite. The deposit is characterized by pervasive wall rock alteration around the mineralized quartz veins. Laterally three different alteration zones, greisen, silicification and potassic zones, are marked based on the field features, mineral assemblages and geo-chemical characteristics. In the present paper, systematic mineralogical and chemical variation in these alteration zones is reported. Thick mono-mineralic (zinnwaldite) selvages around the veins characterize the deposit. Plagioclase and alkali feldspar are low in the greisen zones while K-feldspar shows more increase than plagioclase in the potassic zone. Quartz is uniformly high in all the alteration zones, but it shows an anomalous value in the silicification zone. Al2O3 concentration shows initial depletion in greisen zone with gradual increase away from the contact. MgO and FeO are higher in greisen zone than silicification and potassic zones. The potassic zone is characterized by the depletion of Na2O and higher value of K2O.
The common presence of topaz and fluorite as both primary and secondary minerals and fluorine-bearing micas suggest fluorine partitioning in substantial amount between granitic melt and coexisting aqueous fluid phase and higher HF activity during the evolution of hydrothermal fluid. The mutual relationship of the fluorine minerals (topaz and fluorite) in the different alteration zones suggests an increase in the Ca2+ activity and decrease of H+ activity during the fluid evolution from greisenization towards alkali-metasomatised granite and the fluid is assumed to change from low to high activity ratio of Ca2+/H+.  相似文献   
20.
Cosmogenic chlorine-36 production rates in terrestrial rocks   总被引:2,自引:0,他引:2  
Chlorine-36 is produced in rocks exposed to cosmic rays at the earth surface through thermal neutron activation of 35Cl, spallation of 39K and 40Ca, and slow negative moun capture by 40Ca. We have measured the 36Cl content of 14C-dated glacial boulders from the White Mountains in eastern California and in a 14C-dated basalt flow from Utah. Effective, time-intergrated production parameters were calculated by simultaneous solution of the 36Cl production equations. The production rates due to spallation are 4160 ± 310 and 3050 ± 210 atoms 36Cl yr−1 mol−139K and 40Ca, respectively. The thermal neutron capture rate was calculated to be (3.07 ± 0.24) × 105 neutrons (kg of rock)−1 yr−1. The reported values are normalized to sea level and high geomagnetic latitudes. Production of 36Cl at different altitudes and latitudes can be estimated by appropriate scaling of the sea level rates. Chlorine-36 dating was performed on carbonate ejecta from Meteor Crater, Arizona, and late Pleistocene morainal boulders from the Sierra Nevada, California. Calculated 36Cl ages are in good agreement with previously reported ages obtained using independent methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号