首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   4篇
  国内免费   1篇
大气科学   1篇
地球物理   6篇
地质学   40篇
天文学   10篇
自然地理   4篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  1999年   1篇
  1996年   1篇
  1992年   1篇
  1991年   2篇
  1986年   1篇
  1984年   1篇
  1912年   1篇
  1910年   1篇
排序方式: 共有61条查询结果,搜索用时 29 毫秒
51.
This paper deals with the theoretical aspects of nonaqueous phase liquid (NAPL)‐dissolution‐induced instability in two‐dimensional fluid‐saturated porous media including solute dispersion effects.After some weaknesses associated with the previous work are analyzed and overcome, a comprehensive dimensionless number, known as the Zhao number, is proposed to represent the main driving force and three controlling mechanisms of an NAPL‐dissolution system that has a finite domain. The linear stability analysis is carried out to derive the critical value of the comprehensive dimensionless number of the NAPL‐dissolution system in a limit case as the ratio of the equilibrium concentration to the density of the NAPL approaches zero. As a result, a theoretical criterion that can be used to assess the instability of planar NAPL‐dissolution fronts in two‐dimensional fluid‐saturated porous media of finite domains has been established. Not only can the present theoretical results be used for the theoretical understanding of the effect of solute dispersion on the instability of an NAPL‐dissolution front in the fluid‐saturated porous medium of either a finite domain or an infinite domain, but also they can be used as benchmark solutions for verifying numerical methods employed to simulate detailed morphological evolution processes of NAPL‐dissolution fronts in two‐dimensional fluid‐saturated porous media. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
52.
We use theoretical and numerical methods to investigate the general pore-fluid flow patterns near geological lenses in hydrodynamic and hydrothermal systems respectively. Analytical solutions have been rigorously derived for the pore-fluid velocity, stream function and excess pore-fluid pressure near a circular lens in a hydrodynamic system. These analytical solutions provide not only a better understanding of the physics behind the problem, but also a valuable benchmark solution for validating any numerical method.
  Since a geological lens is surrounded by a medium of large extent in nature and the finite element method is efficient at modelling only media of finite size, the determination of the size of the computational domain of a finite element model, which is often overlooked by numerical analysts, is very important in order to ensure both the efficiency of the method and the accuracy of the numerical solution obtained. To highlight this issue, we use the derived analytical solutions to deduce a rigorous mathematical formula for designing the computational domain size of a finite element model. The proposed mathematical formula has indicated that, no matter how fine the mesh or how high the order of elements, the desired accuracy of a finite element solution for pore-fluid flow near a geological lens cannot be achieved unless the size of the finite element model is determined appropriately.
  Once the finite element computational model has been appropriately designed and validated in a hydrodynamic system, it is used to examine general pore-fluid flow patterns near geological lenses in hydrothermal systems. Some interesting conclusions on the behaviour of geological lenses in hydrodynamic and hydrothermal systems have been reached through the analytical and numerical analyses carried out in this paper.  相似文献   
53.
54.
In order to investigate the effect of material anisotropy on convective instability of three-dimensional fluid-saturated faults, an exact analytical solution for the critical Rayleigh number of three-dimensional convective flow has been obtained. Using this critical Rayleigh number, effects of different permeability ratios and thermal conductivity ratios on convective instability of a vertically oriented three-dimensional fault have been examined in detail. It has been recognized that (1) if the fault material is isotropic in the horizontal direction, the horizontal to vertical permeability ratio has a significant effect on the critical Rayleigh number of the three-dimensional fault system, but the horizontal to vertical thermal conductivity ratio has little influence on the convective instability of the system, and (2) if the fault material is isotropic in the fault plane, the thermal conductivity ratio of the fault normal to plane has a considerable effect on the critical Rayleigh number of the three-dimensional fault system, but the effect of the permeability ratio of the fault normal to plane on the critical Rayleigh number of three-dimensional convective flow is negligible.  相似文献   
55.
The chemical‐dissolution front propagation problem exists ubiquitously in many scientific and engineering fields. To solve this problem, it is necessary to deal with a coupled system between porosity, pore‐fluid pressure and reactive chemical‐species transport in fluid‐saturated porous media. Because there was confusion between the average linear velocity and the Darcy velocity in the previous study, the governing equations and related solutions of the problem are re‐derived to correct this confusion in this paper. Owing to the morphological instability of a chemical‐dissolution front, a numerical procedure, which is a combination of the finite element and finite difference methods, is also proposed to solve this problem. In order to verify the proposed numerical procedure, a set of analytical solutions has been derived for a benchmark problem under a special condition where the ratio of the equilibrium concentration to the solid molar density of the concerned chemical species is very small. Not only can the derived analytical solutions be used to verify any numerical method before it is used to solve this kind of chemical‐dissolution front propagation problem but they can also be used to understand the fundamental mechanisms behind the morphological instability of a chemical‐dissolution front during its propagation within fluid‐saturated porous media. The related numerical examples have demonstrated the usefulness and applicability of the proposed numerical procedure for dealing with the chemical‐dissolution front instability problem within a fluid‐saturated porous medium. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
56.
57.
We present the results of a high-precision timing campaign directed at the binary millisecond pulsar J1600−3053. Submicrosecond pulsar timing has long been the domain of bright, low dispersion measure millisecond pulsars or large diameter telescopes. This experiment, conducted using the Parkes radio telescope in New South Wales, Australia, and utilizing the latest baseband recording hardware, has allowed this pulsar, although distant and faint, to present residuals to a model of its spin behaviour of 650 ns over a period of more than 2 yr. We have also constrained the orbital inclination via Shapiro delay to be between 59° and 70° to 95 per cent confidence and obtained a scintillation velocity measurement indicating a transverse velocity less than 84 km s−1. This pulsar is demonstrating remarkable stability comparable to, and in most cases improving upon, the very best long-term pulsar timing experiments. If this stability is maintained, the current limits on the energy density of the stochastic gravitational wave background will be reached in four more years.  相似文献   
58.
We conduct a theoretical analysis to investigate the double diffusion-driven convective instability of three-dimensional fluid-saturated geological fault zones when they are heated uniformly from below. The fault zone is assumed to be more permeable than its surrounding rocks. In particular, we have derived exact analytical solutions to the total critical Rayleigh numbers of the double diffusion-driven convective flow. Using the corresponding total critical Rayleigh numbers, the double diffusion-driven convective instability of a fluid-saturated three-dimensional geological fault zone system has been investigated. The related theoretical analysis demonstrates that: (1) The relative higher concentration of the chemical species at the top of the three-dimensional geological fault zone system can destabilize the convective flow of the system, while the relative lower concentration of the chemical species at the top of the three-dimensional geological fault zone system can stabilize the convective flow of the system. (2) The double diffusion-driven convective flow modes of the three-dimensional geological fault zone system are very close each other and therefore, the system may have the similar chance to pick up different double diffusion-driven convective flow modes, especially in the case of the fault thickness to height ratio approaching 0. (3) The significant influence of the chemical species diffusion on the convective instability of the three-dimensional geological fault zone system implies that the seawater intrusion into the surface of the Earth is a potential mechanism to trigger the convective flow in the shallow three-dimensional geological fault zone system.  相似文献   
59.
60.
Urban forests are an integral part of urban ecosystems and quality of life. With an overwhelmingly urban population, Latin American countries benefit considerably from their urban forests. However, little is known about the values that make such forests important. The goal of this study was to provide an overview of urban forest values in Colombia. Exploratory research was undertaken in the cities of Bogotá, Cali, and Pereira, with the use of field tours based on visits to five urban forest types, personal diaries, and focus groups. Recruitment was based on voluntary self-selection. Data were captured from 72 participants and analyzed via coding and theme extraction. The data demonstrate that Colombian urban dwellers value the urban forest in terms of a rich array of psychological, aesthetic, sociocultural, ecological, environmental, and economic themes. This study is a primer for eliciting urban forest values and developing typologies in a novel and effective way.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号