首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   1篇
测绘学   2篇
大气科学   3篇
地球物理   3篇
地质学   11篇
海洋学   3篇
天文学   33篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   7篇
  2015年   5篇
  2014年   3篇
  2013年   8篇
  2012年   4篇
  2011年   8篇
  2010年   6篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
  1996年   2篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
51.
Bhopalpatnam Granulite Belt which occur along SW margin of Bastar Craton and NE shoulder of Pranhita-Godavari Rift comprise of charnockite (enderbitic variety), garnet-sillimanite-biotite gneiss, quartzo-feldspathic gneiss and corundum bearing aluminous gneiss. High La/Yb ratio, low Eu anomaly (Eu/Eu*=1.0), high LREE/HREE ratio with uniform REE pattern, high La/Sc ratio (0.53–6.43), high Th/Sc ratio (0.03–2.56), low Ni (5.52–20.95), low Cr (31.05–117.05) and uniform Zr/Hf distribution pattern indicate a Proterozoic character. Distribution pattern of K2O, Na2O and CaO in ternary diagram show quartz-monzonite-granodiorite trend for the bulk rocks indicating that the bulk rock composition is close to TTG of early Archaean, which might have supplied the sediments for the rocks of Bhopalpatnam Granulite Belt. Geochemical and mineralogical evidence indicate an argillaceous protolith for garnet — sillimanite — biotite gneiss and corundum bearing aluminous gneiss, whereas an arkosic protolith for quartzo-feldspathic gneiss. The geochemical signatures also suggest an active continental margin setting for the rocks of Bhopalpatnam Granulite Belt with prominent Nb and Ta anomaly favouring a subduction environment between Bastar Craton and East Dharwar Craton. This is in conformity with the finding of the earlier workers suggesting a clockwise P-T path based on the combined fluid inclusion and mineral phase equilibria. The LILE geochemistry of charnockite suggests a bi-phase evolution. High LREE/HREE ratio portrays a highly evolved nature of the charnockitic melt generated through partial melting of the continental crust at the final stage of the granulite facies metamorphism during collision between Bastar and East Dharwar Cratons.  相似文献   
52.
Sahar  D.  Narayan  J. P.  Kumar  Neeraj 《Natural Hazards》2015,75(2):1167-1186
Natural Hazards - In this paper, the role of basin shape in the site–city interaction (SCI) effects on the ground motion characteristics is documented. The effects of city type and city...  相似文献   
53.
54.
Mars is the only extraterrestrial body which could host primitive lifeforms and also has the potential to host a human base in the near future. Towards fulfilling these objectives, several remote sensing missions and rover based missions have been sent to Mars. Still, confirmation of existing or extinct life on this planet in any form has not been achieved and possibly human missions at selected sites in the future are the key to addressing this problem. Here, we have used remote sensing data from Mars Reconnaissance Orbiter(MRO; NASA), Mars Global Surveyor(MGS; NASA), Mars Odyssey(NASA) and Mars Express(MEX; ESA) to devise an exploration strategy for one such area known as Hebrus Valles, which is a potential site for human exploration of the surface of Mars. A geological context map of the Hebrus Valles and Hephaestus Fossae region has been prepared and a candidate landing site has been proposed in the Hebrus Valles region. Suitable rover paths have been worked out from the proposed landing site for harnessing the science and resource potential of the region. The proposed landing site is located in the equatorial region at(20?40′N, 126?23′E) and due to its proximity to the Potential Subsurface Access Candidates(PSACs) in the region, such as sinkholes and skylights and also other resources such as crater ejecta, silicate material and fluvial channels, the site is appropriate for exploration of the region.  相似文献   
55.
This paper presents a correlative study between the peak values of geomagnetic activity indices (Dst, Kp, ap and AE) and the peak values of various interplanetary field (Bt, Bz, E and σB) and plasma (T, D, V, P and β) parameters along with their various products (BV, BzV and B2V) during intense geomagnetic storms (GMSs) for rising, maximum and decay phases as well as for complete solar cycle 23. The study leads to the conclusion that the peak values of different geomagnetic activity indices are in good correlation with Bt, Bz, σB, V, E, BV, BzV and B2V, therefore these parameters are most useful for predicting GMSs and substorms. These parameters are also reliable indicators of the strength of GMSs. We have also presented the lag/lead time analysis between the maximum of Dst and peak values of geomagnetic activity indices, various interplanetary field/plasma parameters for all GMSs. We have found that the average of peak values of geomagnetic activity indices and various field/plasma parameters are larger in decay phase compare to rising and maximum phases of cycle 23. Our analyses show that average values of lag/lead time lie in the ≈?4.00 h interval for Kp, ap and AE indices as well as for Bt, Bz, σB, E, D and P. For a more meaningful analysis we have also presented the above study for two different groups G1 (CME-driven GMSs) and G2 (CIR-driven GMSs) separately. Correlation coefficients between various interplanetary field/plasma parameters, their various products and geomagnetic activity indices for G1 and G2 groups show different nature. Three GMSs and associated solar sources observed during three different phases of this solar cycle have also been studied and it is found that GMSs are associated with large flares, halo CMEs and their active regions are close to the solar equator.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号