首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   7篇
  国内免费   4篇
测绘学   6篇
大气科学   4篇
地球物理   30篇
地质学   66篇
海洋学   5篇
天文学   10篇
综合类   3篇
自然地理   7篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   4篇
  2019年   9篇
  2018年   12篇
  2017年   11篇
  2016年   19篇
  2015年   3篇
  2014年   10篇
  2013年   11篇
  2012年   6篇
  2011年   10篇
  2010年   3篇
  2009年   7篇
  2008年   1篇
  2007年   5篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1988年   2篇
  1973年   1篇
排序方式: 共有131条查询结果,搜索用时 15 毫秒
101.
An operational algorithm for computation of terrain correction (or local gravity field modeling) based on application of closed-form solution of the Newton integral in terms of Cartesian coordinates in multi-cylindrical equal-area map projection of the reference ellipsoid is presented. Multi-cylindrical equal-area map projection of the reference ellipsoid has been derived and is described in detail for the first time. Ellipsoidal mass elements with various sizes on the surface of the reference ellipsoid are selected and the gravitational potential and vector of gravitational intensity (i.e. gravitational acceleration) of the mass elements are computed via numerical solution of the Newton integral in terms of geodetic coordinates {,,h}. Four base- edge points of the ellipsoidal mass elements are transformed into a multi-cylindrical equal-area map projection surface to build Cartesian mass elements by associating the height of the corresponding ellipsoidal mass elements to the transformed area elements. Using the closed-form solution of the Newton integral in terms of Cartesian coordinates, the gravitational potential and vector of gravitational intensity of the transformed Cartesian mass elements are computed and compared with those of the numerical solution of the Newton integral for the ellipsoidal mass elements in terms of geodetic coordinates. Numerical tests indicate that the difference between the two computations, i.e. numerical solution of the Newton integral for ellipsoidal mass elements in terms of geodetic coordinates and closed-form solution of the Newton integral in terms of Cartesian coordinates, in a multi-cylindrical equal-area map projection, is less than 1.6×10–8 m2/s2 for a mass element with a cross section area of 10×10 m and a height of 10,000 m. For a mass element with a cross section area of 1×1 km and a height of 10,000 m the difference is less than 1.5×10–4m2/s2. Since 1.5× 10–4 m2/s2 is equivalent to 1.5×10–5m in the vertical direction, it can be concluded that a method for terrain correction (or local gravity field modeling) based on closed-form solution of the Newton integral in terms of Cartesian coordinates of a multi-cylindrical equal-area map projection of the reference ellipsoid has been developed which has the accuracy of terrain correction (or local gravity field modeling) based on the Newton integral in terms of ellipsoidal coordinates.Acknowledgments. This research has been financially supported by the University of Tehran based on grant number 621/4/859. This support is gratefully acknowledged. The authors are also grateful for the comments and corrections made to the initial version of the paper by Dr. S. Petrovic from GFZ Potsdam and the other two anonymous reviewers. Their comments helped to improve the structure of the paper significantly.  相似文献   
102.
The stability of slopes is always of great concern in the field of rock engineering. The geometry and orientation of pre-existing discontinuities show a larger impact on the behavior of slopes that is often used to describe the measurement of the steepness, incline, gradient, or grade of a straight line. One of the structurally controlled modes of failure in jointed rock slopes is plane failure. There are numerous analytical methods for the rock slope stability including limit equilibrium, stress analysis and stereographic methods. The limiting equilibrium methods for slopes under various conditions against plane failure have been previously proposed by several investigators. However, these methods do not involve water pressure on sliding surfaces assessments due to water velocity and have not yet been validated by case study results. This paper has tried to explore the effects of forces due to water pressure on discontinuity surfaces in plane failure through applying the improved equations. It has studied the effect of water flow velocity on sliding surfaces in safety factor, as well. New equations for considering water velocity (fluid dynamics) are presented. To check the validity of the suggested equations, safety factor for a case study has been determined. Results show that velocity of water flow had significant effect on the amount of safety factor. Also, the suggested equations have higher validity rate compared to the current equations.  相似文献   
103.
Shale formation swelling is one of the main factors affecting wellbore instability and associated problems in drilling operation. In order to eliminate these problems, it is important to investigate formation characteristics and understand mechanisms of rock-fluid interaction, from chemical/mechanical point of view. Shale membrane efficiency is known as an important parameter affecting wellbore instability. In order to measure this parameter, many mathematical models and experimental efforts have been carried out which consider mechanical-chemical processes for rock-fluid interactions. In this study, the field equations governing the problem have been derived based on the linear chemo-poroelastic theory and solved using analytical/numerical methods. Afterward, a comprehensive workflow to characterize the chemo-poroelastic parameters of illite-rich shale is conducted in the laboratory. In fact, mineralogical and apparent properties of shale sample have been described and some setups were performed such as triaxial test and membrane efficiency. Then genetic algorithm has been applied to solve an inverse problem and get a match between experimental data and modeling results. Ultimately, the three important properties in shale-fluid interactions, i.e., shale membrane efficiency, hydraulic, and chemical diffusivity coefficient have been estimated. Comparing the simulation results with the experimental data indicates that the simulation model can appropriately simulate the pore pressure transmission test. With this approach, the required parameters can be estimated with good accuracy without using time-consuming and costly tests.  相似文献   
104.
China Ocean Engineering - The breakwaters have experienced many changes during their construction history. These changes have been considered to improve their performance, depending on their...  相似文献   
105.
This paper treats the dynamic response of a multilayered transversely isotropic fluid saturated poroelastic half-space under surface time-harmonic traction. The governing system of partial differential equations is uncoupled with the use of a set of physically meaningful and complete potential functions that decompose different body waves in a saturated poroelastic transversely isotropic medium. After expressing the equations in the Hankel-Fourier domain, a proper algebraic factorization is applied to generate reflection and transmission matrices for decomposed waves. All responses including displacements, stresses, and pore fluid pressure for both general patch load and point load are presented in the form of semi-infinite line integrals. The verification of the method is confirmed with the degeneration of the solutions presented here to the existing solutions for dried both homogeneous and multilayered elastic half-spaces as well as poroelastic half-space. Selected numerical results are depicted to investigate the effects of layering and pore pressure on responses of a transversely isotropic poroelastic medium. The load distribution effects are studied by comparison of the patch and point load responses. Also, resonance notion and effective parameters on this phenomenon such as layering system and anisotropy contrast are discussed. Significant influence of materials and layering configuration on number and amplitude of resonances depicted through the numerical evaluation.  相似文献   
106.
A bench scale study was conducted to assess the possibility and extent of biological clogging in compacted clayey soil exposed to high-strength leachate simulating conditions in a landfill. In two series of experiments, distilled–deionized water, slightly acidic water and fresh high-strength leachate were permeated through compacted clayey soil and the rate of infiltration was recorded. Colony-forming units per unit mass of soil were counted, and scanning electron microscope photographs were taken before and after termination of experiments. Results indicated that infiltration of leachate containing a very high concentration of organic matter followed a logistic fit indicating hydraulic clogging of the porous media. This was in agreement with a five order of magnitude greater bacterial growth compared to the original state of the soil and to cases where distilled–deionized and acidified water was used as the permeant. Water and acidified water infiltration followed a power fit indicating persistent infiltration through the end of experiments with no sign of clogging. Bacterial counts in these cases were similar to that of the original state of the soil. Photographs taken by scanning electron microscope also indicated formation of plate-like material within the soil texture in contrast to no change when water was used as the permeating fluid and to formation of holes when acidified water was infiltrated through the soil. It was concluded that biological clogging considerably reduced the rate of infiltration within compacted clayey soil shortly after exposure to high-strength leachate.  相似文献   
107.
A late Pleistocene long pollen record from Lake Urmia, NW Iran   总被引:4,自引:0,他引:4  
A palynological study based on two 100-m long cores from Lake Urmia in northwestern Iran provides a vegetation record spanning 200 ka, the longest pollen record for the continental interior of the Near East. During both penultimate and last glaciations, a steppe of Artemisia and Poaceae dominated the upland vegetation with a high proportion of Chenopodiaceae in both upland and lowland saline ecosystems. While Juniperus and deciduous Quercus trees were extremely rare and restricted to some refugia, Hippophaë rhamnoides constituted an important phanerophyte, particularly during the late last glacial period. A pronounced expansion in Ephedra shrub-steppe occurred at the end of the penultimate late-glacial period but was followed by extreme aridity that favoured an Artemisia steppe. Very high lake levels, registered by both pollen and sedimentary markers, occurred during the middle of the last glaciation and late part of the penultimate glaciation. The late-glacial to early Holocene transition is represented by a succession of Hippophaë, Ephedra, Betula, Pistacia and finally Juniperus and Quercus. The last interglacial period (Eemian), slightly warmer and moister than the Holocene, was followed by two interstadial phases similar in pattern to those recorded in the marine isotope record and southern European pollen sequences.  相似文献   
108.
Feizi  Morteza  Jalali  Mohsen  Renella  Gianacrlo 《Natural Hazards》2019,95(3):657-675

More than 80% of sewage sludge (SS) produced in Iran is landfilled with high environmental impact. The chemical properties of SS produced from wastewater plants of cites of Arak, Isfahan, Kermanshah, Rasht, Saveh, Shiraz, Sanandaj, Tehran, Takestan, and Toyserkan were studied to assess the potential beneficial effects of their application to agricultural soil as sustainable SS management. The pH and EC values, total content and water-soluble concentration of nutrients and heavy metals, their water-extractable pools were determined, and their speciation was done through the NICA–Donnan model using the Visual MINTEQ software. Relatively high contents of N, P, and physiologically active cations indicated potential beneficial effects of SS for land application in the agro-ecosystems, whereas the heavy metal content depended on the SS production site, with higher levels found in the SS of the Arak and Saveh wastewater treatment plants. The pH value was the main factor controlling the metal speciation, with Cu and Pb having the highest affinity for the organic matter, and Zn and Mn being mainly present as free ions or inorganic species. Results showed that SS from different locations in Iran differed in their main chemical properties and elemental composition and that speciation analysis could be used to predict potential beneficial and harmful effects of SS, particularly upon the modeling of metal–organic complexes by the NICA–Donnan approach. Globally, our results confirmed that while the SS produced in Iran has potential suitable chemical properties for use in agriculture, their heavy metals load should not be ignored.

  相似文献   
109.
New field and laboratory studies on the ophiolite of Khoy (northwestern corner of Iran) lead to the discovery that there are not one, but two ophiolitic complexes in the Khoy area: (1) an old, poly-metamorphic ophiolite, whose oldest metamorphic amphiboles yielded a Lower Jurassic apparent 40K–40Ar age, and whose primary magmatic age should logically be pre-Jurassic (Upper-Triassic?); (2) a younger non metamorphic ophiolite of well dated Upper Cretaceous age. To cite this article: M. Khalatbari-Jafari et al., C. R. Geoscience 335 (2003).  相似文献   
110.
The valuation of a mining project depends upon the accuracy of geological block model. Sampling density, estimation method, and proper block size mainly affect the accuracy of estimated block. This paper aims to answer three questions: (1) which estimation method is more accurate, (2) what is the relation between sampling density and block size, and (3) what the optimum block size is. Conditional Gaussian simulation (CGS) was used to generate a hypothetical deposit, considered as a real block model. A range of different block dimensions were estimated by ordinary kriging, inverse squared distance, and nearest neighbor methods based on tow-simulated drilling grids database. The comparison of estimated and real block grades reveals that increasing the sampling density results the similar outcomes of geostatistics and deterministic interpolation methods. Furthermore, it was deduced that sampling density could not be a viable alternative in choosing appropriate block dimension and the variogram rang a was suggested as an affective parameter in block size selection. Then a geometrical formula was developed to obtain the block size based on the variogram range. The increment in project value that a mine planner can expected from the additional information of the dense drilling grid was also calculated and it was concluded that the block size obtained based on the suggested formula results acceptable information value. Finally, the database of Chador Malu iron ore mine which is located in 180 km northeast of Yazd city in the central part of Iran were used to validate the suggested formula.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号