首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   4篇
测绘学   1篇
大气科学   5篇
地球物理   13篇
地质学   12篇
海洋学   4篇
天文学   36篇
综合类   1篇
自然地理   7篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   6篇
  2008年   5篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2002年   3篇
  2001年   3篇
  2000年   5篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1977年   1篇
  1974年   2篇
  1972年   2篇
排序方式: 共有79条查询结果,搜索用时 459 毫秒
21.
Abstract: Southwest Hokkaido is largely covered by Late Miocene to Quaternary igneous rocks, and has a large number of gold veins and base-metal veins of the same age. Investigation of the silica-normalized concentration of elements has revealed regional petrochemical zoning; large ion lithophile elements (LILE) and K2O/(Na2O+K2O) of the rocks increase toward Japan Sea, whereas total FeO, CaO, and 87Sr/86Sr decrease. Mapped concentration isoplethes of these elements are not ideally parallel to the volcanic front, but protrude to the west at Funka Bay, and to the northwest at Matsumae Peninsula. Isoplethes of 87Sr/86Sr show similar patterns and two more northwestward protrusions in the northeast (Jozankei block) of southwest Hokkaido. Contrary to the general petrochemical trend, both high– and low-LILE volcanic rocks occur in the Jozankei block. The ore deposits are distributed in four metallogenic zones; manganese–base–metal zone on the Japan Sea side, pyrite-limonite zone mainly along the volcanic front, gold zone in the middle, and two units of gold–base–metal zone. The northern unit of this zone is in the Jozankei block, and seems a part of the gold zone overlapped by the manganese–base–metal zone. Thus, as a rule, pyrite–limonite, gold, and base-metal deposits accompany low–, intermediate–, and high-LILE igneous rocks, respectively. Individual deposits and volcanic rocks make chains oblique to the zones and the volcanic front. The majority of the ore deposits are distributed along ridges of Bouguer anomalies overlapped by the volcanic chains, which apparently control the patterns of the petrochemical isoplethes. This is typical for two volcanic chains to the north and south of Funka Bay, where the petrochemical isoplethes protrude to the west. This indicates that both the igneous activity and the mineralization have been under the control of tectonic fractures at the roots of the volcanic chains. The geological, petrochemical and metallogenic data support the idea that the chemical characteristics of the deposits are correlated mainly with the chemistry of the associated magmas, and partly with that of the host rocks.  相似文献   
22.
We have studied magnetic fractions of five acapulcoites, three lodranites, and two winonaites to investigate chemical compositions of their precursor materials and metallic partial melting processes occurring on their parent bodies. One winonaite metal is similar in composition to low Au, low Ni IAB iron subgroup, indicating genetic relationship between them. Magnetic fractions of chondrule‐bearing acapulcoite and winonaite have intermediate chemical compositions of metals between H chondrites and EL chondrites. This fact indicates that the precursor materials of acapulcoite–lodranites and winonaites were similar to H and/or EL chondrites in chemical compositions. Magnetic fractions in acapulcoite–lodranites have a large variety of chemical compositions. Most of them show enrichments of W, Re, Ir, Pt, Mo, and Rh, and one of them shows clear depletion in Re and Ir relative to those of chondrule‐bearing acapulcoite. Chemical compositional variations among acapulcoite–lodranite metals cannot be explained by a single Fe‐Ni‐S partial melting event, but a two‐step partial melting model can explain it.  相似文献   
23.
24.
Analytical solutions for the piezomagnetic potentials are derived for strike-slip, dip-slip and tensile-opening fault motions with arbitrary dip and strike angles, so as to be applicable in various types of earthquakes. These solutions are expressed as the composition of elementary functions which are identical to the magnetic potentials produced by magnetic dipoles, quadrupoles and octupoles distributed on the fault plane and other planes. Therefore, the geomagnetic field changes due to the piezomagnetic effect are expressed by the superposition of the fields produced by these equivalent sources.
Examples of calculated results show characteristic features for various types of fault motions as follows: (1) the pattern of the geomagnetic field changes becomes significantly different depending on the strike direction, although the maximum amplitude is almost the same for all directions; (2) the geomagnetic field change reaches a maximum at a dip angle of 90° for strike-slip and tensile-opening fault motions and at 45° for dip-slip fault motion.  相似文献   
25.
Based upon a novel paradigm of galaxy formation under the influence of an ultraviolet background, the evolutionary bifurcation of pre-galactic clouds is compared with observations of elliptical and spiral galaxies. The theory predicts that the dichotomy between dissipational and dissipationless galaxy formation stems from the degree of self-shielding from the ultraviolet background radiation. This is demonstrated on a bifurcation diagram of collapse epochs versus masses of pre-galactic clouds. Using the observed properties, the collapse epochs and mass are assessed for each type of galaxy . By direct comparison of the theory with observations, it turns out that the theoretical bifurcation branch successfully discriminates between elliptical and spiral galaxies. This suggests that the ultraviolet background radiation could play a profound role in the differentiation of galactic morphology into the Hubble sequence.  相似文献   
26.
27.
An earthquake of Mw 9.0 struck the Pacific coast in northeast Japan on March 11, 2011 and was followed by a hugely damaging tsunami along 500 km of the Japanese coastline. An inland aftershock of M. 7.0 occurred on April 11; during which, surface fault ruptures appeared on land. A large variety of landslide disasters resulted from these earthquakes in various parts of northeastern Honshu, Japan. The full extent of the landslides is still being determined. This brief report introduces some of the landslide phenomena so far investigated by the Japanese Landslide Society. These are (1) failure of a water reservoir embankment dam in Sukagawa, Fukushima prefecture, (2) landslides and surface seismic fault rupture from the April 11 aftershock in Iwaki, Fukushima, (3) a concentration of surface failures at Matsushima Bay in Miyagi prefecture, and (4) small landslides on modified slopes in residential areas around Sendai city.  相似文献   
28.
We report the investigation of cutting methods for Hayabusa samples. The purpose of our study is to explore the possibility of applying multiple analyses to a single particle effectively. We investigated the cutting performance of a blade dicing saw, laser, focused ion beam (FIB), and physical breaking by microindenter. Cutting performance was examined by estimating the aspect ratio of the cut slit, i.e., depth over width of the slit. We also investigated the possible contamination and sample damage by cutting. The result of the investigation shows that we can cut the samples from <50 μm to 500 μm using those methods with aspect ratios from 10 to 20, although they would introduce some contamination or damage to the samples. Our investigations also provide an important basis for the analysis of samples obtained by future sample return missions.  相似文献   
29.
Assuming simple dynamics for the growth of density fluctuations, we implement six-dimensional (6D) radiative transfer calculations to elucidate the effects of photon propagation during the reionization of an inhomogeneous universe. The ionizing sources are postulated to be AGN-like in this paper. The present simulations reveal that radiative transfer effects are still prominent considerably after the percolation epoch, in which patchy ionized regions connect with each other. In other words, owing to the collective opacity, the Universe does not become perfectly transparent against ionizing radiation even though strongly self-shielded regions disappear. It turns out that the inhomogeneity of the medium enhances the opacity effects and delays the end of reionization. Owing to such radiative transfer effects, the reionization in an inhomogeneous universe proceeds fairly slowly, in contrast to the prompt reionization in a homogeneous universe, and as a result the surface of reionization is not so sharply edged, but highly uneven. As a signature of the uneven surface of reionization, the cosmic IR background (CIB) radiation, which is produced by Ly photons resulting from radiative recombination, could exhibit strong anisotropies, reflecting the amplitude of density fluctuations at the reionization era. The predicted CIB intensity lies on a level of possible detection by forthcoming IR space telescope facilities.  相似文献   
30.
Rare earth elements (REE) and uranium were studied for their distributions in various component phases of four ordinary chondrites, Kesen (H4), Richardton (H5), Bruderheim (L6), and Saint Séverin (LL6). A selective dissolution method was applied for the phase fractionation. The REE were analysed by neutron activation analysis, and U was determined by neutron-induced fission tracks. The present study revealed that both REE and U are highly enriched in the Ca-phosphate minerals with different enrichment factors, implying chemical fractionation between them. The phosphates seem to be responsible for more than 80% of the light REE in all chondrites. On the other hand, only 20–40% of the total U resides in the Ca-phosphates. This difference in enrichments might have been caused through the levels of metamorphic activity on the meteoritic parent bodies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号