首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   555篇
  免费   42篇
  国内免费   4篇
测绘学   15篇
大气科学   92篇
地球物理   120篇
地质学   203篇
海洋学   32篇
天文学   84篇
综合类   14篇
自然地理   41篇
  2024年   2篇
  2023年   3篇
  2022年   1篇
  2021年   7篇
  2020年   10篇
  2019年   12篇
  2018年   25篇
  2017年   14篇
  2016年   30篇
  2015年   22篇
  2014年   25篇
  2013年   44篇
  2012年   36篇
  2011年   36篇
  2010年   33篇
  2009年   39篇
  2008年   38篇
  2007年   27篇
  2006年   25篇
  2005年   32篇
  2004年   16篇
  2003年   18篇
  2002年   8篇
  2001年   13篇
  2000年   5篇
  1999年   5篇
  1998年   6篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   7篇
  1993年   2篇
  1991年   6篇
  1990年   4篇
  1989年   6篇
  1988年   7篇
  1987年   2篇
  1986年   4篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1971年   1篇
  1970年   2篇
  1969年   2篇
  1968年   1篇
  1967年   3篇
  1966年   1篇
  1955年   1篇
  1954年   1篇
排序方式: 共有601条查询结果,搜索用时 484 毫秒
421.
Baseline monitoring of groundwater quality aims to characterize the ambient condition of the resource and identify spatial or temporal trends. Sites comprising any baseline monitoring network must be selected to provide a representative perspective of groundwater quality across the aquifer(s) of interest. Hierarchical cluster analysis (HCA) has been used as a means of assessing the representativeness of a groundwater quality monitoring network, using example datasets from New Zealand. HCA allows New Zealand??s national and regional monitoring networks to be compared in terms of the number of water-quality categories identified in each network, the hydrochemistry at the centroids of these water-quality categories, the proportions of monitoring sites assigned to each water-quality category, and the range of concentrations for each analyte within each water-quality category. Through the HCA approach, the National Groundwater Monitoring Programme (117 sites) is shown to provide a highly representative perspective of groundwater quality across New Zealand, relative to the amalgamated regional monitoring networks operated by 15 different regional authorities (680 sites have sufficient data for inclusion in HCA). This methodology can be applied to evaluate the representativeness of any subset of monitoring sites taken from a larger network.  相似文献   
422.
Engineered (structural) debris-flow mitigation for all creeks with elements at risk and subject to debris flows is often outside of the financial capability of the regulating government, and heavy task-specific taxation may be politically undesirable. Structural debris-flow mitigation may only be achieved over long (decadal scale) time periods. Where immediate structural mitigation is cost-prohibitive, an interim solution can be identified to manage residual risk. This can be achieved by implementing a debris-flow warning system that enables residents to reduce their personal risk for loss of life through timely evacuation. This paper describes Canada??s first real-time debris-flow warning system which has been operated for 2 years for the District of North Vancouver. The system was developed based on discriminant function analyses of 20 hydrometric input variables consisting of antecedent rainfall and storm rainfall intensities for a total of 63 storms. Of these 27 resulted in shallow landslides and subsequent debris flows, while 36 storms were sampled that did not reportedly result in debris flows. The discriminant function analysis identified as the three most significant variables: the 4-week antecedent rainfall, the 2-day antecedent rainfall, and the 48-h rainfall intensity during the landslide-triggering storm. Discriminant functions were developed and tested for robustness against a nearby rain gauge dataset. The resulting classification functions provide a measure for the likelihood of debris-flow initiation. Several system complexities were added to render the classification functions into a usable and defensible warning system. This involved the addition of various functionality criteria such as not skipping warning levels, providing sufficient warning time before debris flows would occur, and hourly adjustment of actual rainfall vs. predicted rainfall since predicted rainfall is not error-free. After numerous iterations that involved warning threshold and cancelation refinements and further model calibrations, an optimal solution was found that best matches the actual debris-flow data record. Back-calculation of the model??s 21-year record confirmed that 76% of all debris flows would have occurred during warning or severe warning levels. Adding the past 2 years of system operation, this percentage increases marginally to 77%. With respect to the District of North Vancouver boundaries, all debris flows occur during Warning and Severe Warnings emphasizing the validity of the system to the area for which it was intended. To operate the system, real-time rainfall data are obtained from a rain gauge in the District of North Vancouver. Antecedent rainfall is automatically calculated as a sliding time window for the 4-week and 2-day periods every hour. The predicted 48-h storm rainfall data are provided by the Geophysical Disaster Computational Fluid Dynamics Centre at the Earth and Ocean Science Department at the University of British Columbia and is updated every hour as rainfall is recorded during a given storm. The warning system differentiates five different stages: no watch, watch level 1 (the warning level is unlikely to be reached), watch level 2 (the warning level is likely to be reached), warning, and severe warning. The debris-flow warning system has operated from October 1, 2009 to April 30, 2010 and October 1, 2010 and April 30, 2011. Fortunately, we were able to evaluate model performance because the exact times of debris flows during November 2009 and January 2010 were recorded. In both cases, the debris flows did not only occur during the warning level but coincided with peaks in the warning graphs. Furthermore, four debris flows occurred during a warning period in November 2009 in the Metro Vancouver watershed though their exact time of day is unknown. The warning level was reached 13 times, and in four of these cases, debris flows were recorded in the study area. One debris flow was recorded during watch II level. There was no severe warning during the 2 years of operation. The current warning level during the wet season (October to April) is accessible via District of North Vancouver??s homepage (www.dnv.org) and by automated telephone message during the rainy season.  相似文献   
423.
The glacier-covered Nevado del Tolima in the Colombian Cordillera Central is an active volcano with potential lahars that might be more hazardous than those on Nevado del Ruiz. Furthermore, rainfall-triggered floods and landslides notoriously and severely affect the region. For effective disaster prevention, a risk analysis is of primary importance. We present here a risk analysis methodology that is based on the assessment of lahar and rainfall-related flood hazard scenarios and different aspects of vulnerability. The methodology is applied for populated centres in the Combeima valley and the regional capital Ibagué (~500,000 inhabitants). Lahar scenarios of 0.5, 1, 5, and 15?million m3 volume are based on melting of 1, 2, 10, and 25?% of ice, firn and snow, respectively, due to volcanic activity and subsequent lahar formation. For flood modelling, design floods with a return period of 10 and 100?years were calculated. Vulnerability is assessed considering physical vulnerability, operationalized by market values of dwelling parcels and population density, whereas social vulnerability is expressed by the age structure of the population and poverty. Standardization of hazard and vulnerability allows for the integration into a risk equation, resulting in five-level risk maps, with additional quantitative estimate of damage. The probability of occurrence of lahars is low, but impacts would be disastrous, with about 20,000 people and more directly exposed to it. Floods are much more recurrent, but affected areas are generally smaller. High-risk zones in Ibagué are found in urban areas close to the main river with high social vulnerability. The methodology has proven to be a suitable tool to provide a first overview of spatial distribution of risk which is considered by local and regional authorities for disaster risk reduction. The harmonization of technical-engineering risk analysis and approaches from social sciences into common reference concepts should be further developed.  相似文献   
424.
For the reconstruction of past climate variations,investigations on the history of glaciers are necessary.In the Himalaya,investigations like these have a rather short tradition in comparison with other mountains on earth.At the same time,this area on the southern margin of Tibet is of special interest because of the question as to the monsoon-influence that is connected with the climate-development.Anyhow,the climate of High Asia is of global importance.Here for the further and regionally intensifying answer to this question,a glacial glacier reconstruction is submitted from the CentralHimalaya,more exactly from the Manaslu-massif.Going on down-valley from the glacial-historical investigations of 1977 in the upper Marsyandi Khola(Nadi) and the partly already published results of field campaigns in the middle Marsyandi Khola and the Damodar- and Manaslu Himal in the years 1995,2000,2004 and 2007,new geomorphological and geological field- and laboratory data are introduced here from the Ngadi(Nadi) Khola and the lower Marsyandi Nadi from the inflow of the Ngadi(Nadi) Khola down to the southern mountain foreland.There has existed a connected ice-stream-network drained down to the south by a 2,100-2,200 m thick and 120 km long Marsyandi Nadi main valley glacier.At a height of the valley bottom of c.1,000 m a.s.l.the Ngadi Khola glacier joined the still c.1,300 m thick Marsyandi parent glacier from the Himalchuli-massif(Nadi(Ngadi) Chuli) – the south spur of the Manaslu Himal.From here the united glacier tongue flowed down about a further 44 km to the south up to c.400 m a.s.l.(27°57'38 "N/84°24'56" E) into the Himalaya fore-chains and thus reached one of or the lowest past ice margin position of the Himalayas.The glacial(LGP(Last glacial period),LGM(Last glacial maximum) Würm,Stage 0,MIS 3-2) climatic snowline(ELA = equilibrium line altitude) has run at 3,900 to 4,000 m a.s.l.and thus c.1,500 altitude meters below the current ELA(Stage XII) at 5,400-5,500 m a.s.l.The reconstructed,maximum lowering of the climatic snowline(ΔELA = depression of the equilibrium line altitude) about 1,500 m corresponds at a gradient of 0.6°C per 100 altitude meters to a High Glacial decrease in temperature of 9°C(0.6 × 15 = 9).At that time the Tibetan inland ice has caused a stable cold high,so that no summer monsoon can have existed there.Accordingly,during the LGP the precipitation was reduced,so that the cooling must have come to more than only 9°C.  相似文献   
425.
Editor's Preface     
Kuhle Matthias 《GeoJournal》1994,33(2-3):131-132
  相似文献   
426.
Dynamic sea level changes following changes in the thermohaline circulation   总被引:3,自引:2,他引:1  
Using the coupled climate model CLIMBER-3, we investigate changes in sea surface elevation due to a weakening of the thermohaline circulation (THC). In addition to a global sea level rise due to a warming of the deep sea, this leads to a regional dynamic sea level change which follows quasi-instantaneously any change in the ocean circulation. We show that the magnitude of this dynamic effect can locally reach up to ~1 m, depending on the initial THC strength. In some regions the rate of change can be up to 20–25 mm/yr. The emerging patterns are discussed with respect to the oceanic circulation changes. Most prominent is a south-north gradient reflecting the changes in geostrophic surface currents. Our results suggest that an analysis of observed sea level change patterns could be useful for monitoring the THC strength.  相似文献   
427.
Twenty paleogeographic maps are presented for Middle Eocene (Lutetian) to Late Pliocene times according to the stratigraphical data given in the companion paper by Berger et al. this volume. Following a first lacustrine-continental sedimentation during the Middle Eocene, two and locally three Rupelian transgressive events were identified with the first corresponding with the Early Rupelian Middle Pechelbronn beds and the second and third with the Late Rupelian Serie Grise (Fischschiefer and equivalents). During the Early Rupelian (Middle Pechelbronn beds), a connection between North Sea and URG is clearly demonstrated, but a general connection between North Sea, URG and Paratethys, via the Alpine sea, is proposed, but not proved, during the late Rupelian. Whereas in the southern URG, a major hiatus spans Early Aquitanian to Pliocene times, Early and Middle Miocene marine, brackish and freshwater facies occur in the northern URG and in the Molasse Basin (OMM, OSM); however, no marine connections between these basins could be demonstrated during this time. After the deposition of the molasse series, a very complex drainage pattern developed during the Late Miocene and Pliocene, with a clear connection to the Bresse Graben during the Piacenzian (Sundgau gravels). During the Late Miocene, Pliocene and Quaternary sedimentation persisted in the northern URG with hardly any interruptions. The present drainage pattern of the Rhine river (from Alpine area to the lower Rhine Embayment) was not established before the Early Pleistocene.  相似文献   
428.
Phase equilibria in the system CaO–MgO–SiO2–CO2–H2O–NaCl are calculated to illustrate phase relations in metacarbonates over a wide-range of P–T–X[H2O–CO2–NaCl] conditions. Calculations are performed using the equation of state of Duan et al. (Geochim Cosmochim Acta 59:2869–2882, 1995) for H2O–CO2–NaCl fluids and the internally consistent data set of Gottschalk (Eur J Mineral 9:175–223, 1997) for thermodynamic properties of solids. Results are presented in isothermal-isobarical plots showing stable mineral assemblages as a function of fluid composition. It is shown that in contact-metamorphic P–T regimes the presence of very small concentrations of NaCl in the fluid causes almost all decarbonation reactions to proceed within the two fluid solvus of the H2O–CO2–NaCl system. Substantial flow of magma-derived fluids into marbles has been documented for many contact aureoles by shifts in stable isotope geochemistry of the host rocks and by the progress of volatile-producing mineral reactions controlled by fluid compositions. Time-integrated fluid fluxes have been estimated by combining fluid advection/dispersion models with the spatial arrangement of mineral reactions and isotopic resetting. All existing models assume that minerals react in the presence of a single phase H2O–CO2 fluid and do not allow for the effect that fluid immiscibility has on the flow patterns. It is shown that fluids emanating from calc-alkaline melts that crystallize at shallow depths are brines. Their salinity may vary depending mainly on pressure and fraction of crystallized melt. Infiltration-driven decarbonation reactions in the host rocks inevitably proceed at the boundaries of the two fluid solvus where the produced CO2 is immiscible and may separate from the brine as a low salinity, low density H2O–CO2 fluid. Most parameters of fluid–rock interaction in contact aureoles that are derived from progress of mineral reactions and stable isotope resetting are probably incorrect because fluid phase separation is disregarded.  相似文献   
429.
1 IntroductionKingGeorgeIsland’s (KGI)ecosystemshavebeensubjectedtovarioustypesofexploitationandobjectofseveralscientificexpeditions,sinceitwasdiscoveredjustafterthefirstsightingofAntarctilandbyWilliamSmithin1 81 9.KGIwasnamedaf tertheBritishkingofthattime …  相似文献   
430.
[35]Braun M,Rau F.Using a multi_year data archive of ERS SAR imagery for the monitoring of firn line positions and ablation patterns on the King George Island ice cap (Antarctica).The Workshop of EARSeL Special Interest Group:Remote Sensing of Land Ice and Snow.Dresden,2000(published on CD_Rom in 2001) [36]Rau F,Braun M,Friedrich M,et al.Radar glacier zones and its boundaries as indicators of glacier mass balance and climatic variability.The Workshop of EARSeL Special Interest Group:Remote Sensing of Land Ice and Snow.Dresden,2000(published on CD_Rom in 2001) [1]Bahr D B.Global distribution of glacier properties:A stochastic scaling paradigm.Water Resource Research,1997,33(7):1 669~1 679 [2]Bahr D B,Meier M F.Snow patch and glacier size distributions.Water Resource Research,2000,36(2):495~501 [3]Braun M,Schneider C.Characteristics of summer energy balance on the west coast of the Antarctic Peninsula.Annals of Glaciology,2000,31:179~183 [4]Braun M,Rau F,Saurer H,et al.The development of radar glacier zones on the King George Island Ice Cap (Antarctica) during the Austral summer 1996~1997 as observed in ERS_2 SAR data.Annals of Glaciology,2000,31:357~363 [5]Calvet J,Corbera J,Furada G.Variacion del frente glaciar en Bahia Sur y Punta Siddons entre 1956 y 1991,Isla Livingston,Islas Shetland del Sur.In: López_Martinez,J.: Geología de la Antártida Occidental.III Congreso Geológico de Espana y VIII Congreso Latinoamericano de Geología,Salamanca,Espana,1992.283~292 [6]Doake C S M,Vaughan D G.Rapid disintegration of the Wordie Ice Shelf in response to atmospheric warming.Nature,1991,350(6 316):328~330 [7]Doake C S M,Corr H F J,Rott H,et al.Break_up and conditions for stability of the northern Larsen Ice Shelf,Antarctica.Nature,1998,391:778~780 [8]Fox A J,Cooper A P R.Climate_change indicators from archival aerial photography of the Antarctic Peninsula.Annals of Glaciology,1998,27:636~642 [9]Harangozo S A,Colwell S R,King J C.An analysis of a 34_year air temperature record from Fossil Bluff (71° S,68° W),Antarctica.Antarctic Science,1997,9(3):355~363 [10]Hulbe C L.Recent changes to Antarctic Peninsula ice shelves: what lessons have been learned? Natural Science,1997,1(6) [11]Jones P D.Antarctic temperatures over the present century——a study of the early expedition record.Journal of Climate,1990,3:1 193~1 203 [12]Kieffer H and 41 others.New eyes from the skye measure glaciers and ice sheets.EOS,2000,81(24):265,270~271 [13]King J C.Recent climate variability in the vicinity of the Antarctic Peninsula.International Journal of Climatology,1994,14:357~369 [14]King J C,Harangozo S A.Climate change in the western Antarctic Peninsula since 1945: observations and possible causes.Annals of Glaciology,1998,27:571~575 [15]Klser H,Arntz W E.RASCAL (RESEARCH on Antarctic Shallow Coastal and Litoral systems).Untersuchungen zur Struktur und Dynamik eines antarktischen Küstenjosystems.Polarforschung,1994,64(1):27~41 [16]Klser H,Ferreyra G,Schloss I,et al.Hydrography of Potter Cove,a small fjord_like inlet in King George Island,South Shetands.Estuarine,Coastal and Shelf Science,1994,38:523~537 [17]Lucchitta B K,Rosanova C E.Retreat of northern margins of George VI and Wilkins Ice Shelves,Antarctic Peninsula.Annals of Glaciology,1998,27:41~46 [18]Morris E M.Surface ablation rates on Moraine Corrie Glacier,Antarctica.Global and Planetary Change,1999,22:221~231 [19]Park B K,Chang S K,Yoon H I,et al.Recent retreat of ice cliffs,King George Island,South Shetland Islands,Antarctic Peninsula.Annals of Glaciology,1998,27:633~635 [20]Rakusa_Suszczewski S.The maritime Antarctic coastal ecosystem of Admiralty Bay.Department of Antarctic Biology,Polish Academy of Sciences,Warsaw,1993.216 [21]Rakusa_Suszczewski S.The hydrography of Admiralty Bay and its inlets,coves and lagoons (King George Island,Antarctica).Polish Polar Research,1995,16(1/2):61~70 [22]Rau F,Braun M,Saurer H,et al.Multi_year snow cover dynamics on the Antarctic Peninsula using SAR imagery.Polarforschung,2000,67(1/2):27~40 [23]Rott H,Skvarca P,Nagler T.Rapid Collapse of northern Larsen Ice Shelf,Antarctica.Science,1996,271:788~792 [24]Rott H,Rack W,Nagler T,et al.Climatically induced retreat and collapse of northern Larsen Ice Shelf,Antarctic Peninsula.Annals of Glaciology,1998,27:86~92 [25]Skvarca P,Rack W,Rott H,et al.Evidence of recent climatic warming on the eastern Antarctic Penisnula.Annals of Glaciology,1998,27:628~932 [26]Simes J C,Bremer U F,Aquino F E,et al.Morphology and variations of glacial drainage basins in the King George Island ice field,Antarctica.Annals of Glaciology,1999,29:220~224 [27]Smith A M,Vaughan D G,Doake C S M,et al.Surface lowering of the ice ramp at Rothera Point,Antarctic Peninsula,in response to regional climate change.Annals of Glaciology,1998,27:113~118 [28]Smith R C,Stammerjohn S E,Baker K S.Surface air temperature variations in the western Antarctic Peninsula region.Antarctic Research Series,1996,70:105~121 [29]Splettstoesser J.Antarctic Global Warming? Nature,1992,355(6 360):503 [30]Stark P.Climatic warming in the central Antarctic Peninsula area.Weather,1994,49(6):215~220 [31]Turner J,Colwel S R,Harangozo S.Variability of precipitation over the coastal western Antarctic Peninsula from synoptic observations.Journal of Geophysical Research,1997,102(D12):13 999~14 007 [32]Warren C R.Iceberg calving and the glaciomarine record.Progress in Physical Geography,1992,16(3):253~282 [33]Wunderle S.Die Schneedeckendynamik der Antarkische Halbinsel und ihre Erfassung mit aktiven und passiven Fernerkundungsverfahren.Freiburger Geographische Hefte,1996,48:172 [34]Braun M,Saurer H,Vogt S,Simes J C,et al.The influence of large_scale atmospheric circulation on surface energy balance on the ice cap of King George Island.International Journal of Climatology,2001,21(1):21~36  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号