首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1302篇
  免费   94篇
  国内免费   27篇
测绘学   27篇
大气科学   142篇
地球物理   346篇
地质学   453篇
海洋学   87篇
天文学   244篇
综合类   2篇
自然地理   122篇
  2024年   3篇
  2023年   5篇
  2022年   14篇
  2021年   36篇
  2020年   40篇
  2019年   39篇
  2018年   75篇
  2017年   57篇
  2016年   69篇
  2015年   50篇
  2014年   57篇
  2013年   96篇
  2012年   72篇
  2011年   94篇
  2010年   56篇
  2009年   94篇
  2008年   90篇
  2007年   89篇
  2006年   69篇
  2005年   56篇
  2004年   47篇
  2003年   42篇
  2002年   36篇
  2001年   18篇
  2000年   16篇
  1999年   17篇
  1998年   14篇
  1997年   5篇
  1996年   11篇
  1995年   4篇
  1994年   8篇
  1993年   9篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1978年   3篇
  1975年   1篇
  1973年   1篇
排序方式: 共有1423条查询结果,搜索用时 484 毫秒
191.
The University of Alabama, Office of Archeological Services (OAS), through funding provided by a private corporation, began a research project aimed at a relatively noninvasive investigation of Mound R at Moundville Archaeological Park, Moundville, Alabama (Site 1Tu500). Plans for the project began in June 1997 with field investigations set for the following fall. In cooperation with Energen Corporation of Alabama, funding was developed for a ground penetrating radar (GPR) survey of the mound, as well as the recovery of 60 core samples from 12 coring locations on the summit of Mound R. Several of the core samples were selected by OAS for resin impregnation and microanalysis. With this goal in mind, OAS found it necessary to construct a vacuum chamber large enough to incorporate the samples. Its construction may be beneficial to others requiring larger chambers for similar analysis. © 1999 John Wiley & Sons, Inc.  相似文献   
192.
193.
The roles of pre‐frontal, frontal and post‐frontal winds as the primary wind systems for dust entrainment and transport in Australia are well established. While the relevance of each system has been observed across different wind erosion events in central Australia, the entrainment of dust by all three winds during the passage of an individual front has not been demonstrated until now. Synoptic information, satellite aerosol and imagery, meteorological and dust concentration data are presented for a single case study erosion event in the lower Lake Eyre Basin. This event demonstrates variable dust transport in three different directions from one of the southern Hemisphere's most significant source regions, and the changing nature of the active dust pathways during the passage of a frontal system. While only a single dust event is considered, the findings show the complexity of mineral aerosol emission and transport patterns even within an individual dust outbreak. For the lower Lake Eyre Basin, this appreciation of pathway behaviour is significant for better understanding the role of aeolian inputs from the dominant Australian source to surrounding marine systems. In a wider context, the findings exhibit the detailed insights into major dust source dynamics that can be obtained from high resolution spatial and particularly temporal data, as used in combination. This work highlights the importance of adequately resolved data for the accurate determination of dust entrainment and transport patterns of major dust sources. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
194.
Predicting the rocking response of structures to ground motion is important for assessment of existing structures, which may be vulnerable to uplift and overturning, as well as for designs which employ rocking as a means of seismic isolation. However, the majority of studies utilize a single rocking block to characterize rocking motion. In this paper, a methodology is proposed to derive equivalence between the single rocking block and various rocking mechanisms, yielding a set of fundamental rocking parameters. Specific structures that have exact dynamic equivalence with a single rocking block, are first reviewed. Subsequently, approximate equivalence between single and multiple block mechanisms is achieved through local linearization of the relevant equations of motion. The approximation error associated with linearization is quantified for three essential mechanisms, providing a measure of the confidence with which the proposed methodology can be applied. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
195.
Recent research developed and experimentally validated a self‐centering buckling‐restrained brace (SC‐BRB) that employs a restoring mechanism created using concentric tubes held flush with pretensioned shape memory alloy rods, in conjunction with a buckling‐restrained brace (BRB) that dissipates seismic energy. The present computational study investigated how the SC‐BRB can be implemented in real buildings to improve seismic performance. First, a computational brace model was developed and calibrated against experimental data, including the definition of a new cyclic material model for superelastic NiTi shape memory alloy. A parametric study were then conducted to explore the design space for SC‐BRBs. Finally, a set of prototype buildings was designed and computationally subjected to a suite of ground motions. The effect of the lateral resistance of gravity framing on self‐centering was also examined. From the component study, the SC‐BRB was found to dissipate sufficient energy even with large self‐centering ratios (as large as 4) based on criteria found in the literature for limiting peak drifts. From the prototype building study, a SC‐BRB self‐centering ratio of 0.5 was capable of reliably limiting residual drifts to negligible values, which is consistent with a dynamic form of self‐centering discussed in the literature. Because large self‐centering ratios can create significant overstrength, the most efficient SC‐BRB frame designs had a self‐centering ratio in the range of 0.5–1.5. Ambient building resistance (e.g., gravity framing) was found to reduce peak drifts, but had a negligible effect on residual drifts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
196.
The self‐centering rocking steel frame is a seismic force resisting system in which a gap is allowed to form between a concentrically braced steel frame and the foundation. Downward vertical force applied to the rocking frame by post‐tensioning acts to close the uplifting gap and thus produces a restoring force. A key feature of the system is replaceable energy‐dissipating devices that act as structural fuses by producing high initial system stiffness and then yielding to dissipate energy from the input loading and protect the remaining portions of the structure from damage. In this research, a series of large‐scale hybrid simulation tests were performed to investigate the seismic performance of the self‐centering rocking steel frame and in particular, the ability of the controlled rocking system to self‐center the entire building. The hybrid simulation experiments were conducted in conjunction with computational modules, one that simulated the destabilizing P‐Δ effect and another module that simulated the hysteretic behavior of the rest of the building including simple composite steel/concrete shear beam‐to‐column connections and partition walls. These tests complement a series of quasi‐static cyclic and dynamic shake table tests that have been conducted on this system in prior work. The hybrid simulation tests validated the expected seismic performance as the system was subjected to ground motions in excess of the maximum considered earthquake, produced virtually no residual drift after every ground motion, did not produce inelasticity in the steel frame or post‐tensioning, and concentrated the inelasticity in fuse elements that were easily replaced. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
197.
198.
The action of organisms in shaping landforms is increasingly recognized; the field of biogeomorphology and the conceptual framework of ecosystem engineering have arisen in response to the need for integrated studies of the interactions between biotic and abiotic components of landscapes. Pathways by which organisms influence landscape development may be complex. For example, primary change initiated by one biotic element may initiate a cascade of other changes that eventually produce a significant landscape modification. Mound‐like landforms in North America and southern Africa are widely cited examples of biogenic structures, yet there is considerable controversy regarding the processes responsible for their formation. Heuweltjies (Afrikaans for little hills) are circular mounds ranging from 10–30 m diameter and 0.5–2 m height and are widespread in western South Africa. Colonies of the termite (Microhodotermes viator) are typically associated with heuweltjies and some investigators have attributed heuweltjie formation to the direct action of termites in redistributing earthen materials. However, rather than being directly responsible in this way, termites simply create nutrient‐rich islands, which support denser vegetation, thereby inducing the localized accretion of aeolian sediments and upward growth of mounds. Contrasting soil features in heuweltjies in one locale indicate these processes have occurred throughout the late Quaternary. Geographic variation in sizes of mounds is explained in part by the local availability of sediments that can be mobilized and redistributed by the wind. Recognition of the operation of aeolian processes in the formation of heuweltjies has important implications for conservation. Any land use that diminishes the sediment‐trapping effect of vegetation on heuweltjies truncates the very process by which new aeolian materials can accrue and may promote irreversible erosion and landscape degradation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
199.
Recession of high‐mountain glaciers in response to climatic change frequently results in the development of moraine‐dammed glacial lakes. Moraine dam failure is often accompanied by the release of large volumes of water and sediment, termed a Glacial Lake Outburst Flood (GLOF). Chukhung Glacier is a small (~3 km2) receding valley glacier in Mt. Everest (Sagarmatha) National Park, Nepal. Unlike many Himalayan glaciers, which possess a thick mantle of supraglacial debris, its surface is relatively clean. The glacier terminus has receded 1.3 km from its maximum Holocene position, and in doing so provided the space for an ice‐contact moraine‐dammed lake to develop. The lake had a maximum volume of 5.5 × 105 m3 and drained as a result of breaching of the terminal moraine. An estimated 1.3 × 105 m3 of material was removed from the terminal moraine during breach development. Numerical dam‐breach modelling, implemented within a Generalised Likelihood Uncertainty Estimation (GLUE) framework, was used to investigate a range of moraine‐dam failure scenarios. Reconstructed outflow peak discharges, including failure via overtopping and piping mechanisms, are in the range 146–2200 m3 s‐1. Results from two‐dimensional hydrodynamic GLOF modelling indicate that maximum local flow depths may have exceeded 9 m, with maximum flow velocities exceeding 20 m s‐1 within 700 m of the breach. The floodwaters mobilised a significant amount of material, sourced mostly from the expanding breach, forming a 300 m long and 100 m wide debris fan originating at the breach exit. moraine‐dam. These results also suggest that inundation of the entire floodplain may have been achieved within ten minutes of initial breach development, suggesting that debris fan development was rapid. We discuss the key glaciological and geomorphological factors that have determined the evolution of a hazardous moraine‐dammed lake complex and the subsequent generation of a GLOF and its geomorphological impact. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
200.
We have used observations of sodium emission obtained with the McMath-Pierce solar telescope and MESSENGER’s Mercury Atmospheric and Surface Composition Spectrometer (MASCS) to constrain models of Mercury’s sodium exosphere. The distribution of sodium in Mercury’s exosphere during the period January 12-15, 2008, was mapped using the McMath-Pierce solar telescope with the 5″ × 5″ image slicer to observe the D-line emission. On January 14, 2008, the Ultraviolet and Visible Spectrometer (UVVS) channel on MASCS sampled the sodium in Mercury’s anti-sunward tail region. We find that the bound exosphere has an equivalent temperature of 900-1200 K, and that this temperature can be achieved if the sodium is ejected either by photon-stimulated desorption (PSD) with a 1200 K Maxwellian velocity distribution, or by thermal accommodation of a hotter source. We were not able to discriminate between the two assumed velocity distributions of the ejected particles for the PSD, but the velocity distributions require different values of the thermal accommodation coefficient and result in different upper limits on impact vaporization. We were able to place a strong constraint on the impact vaporization rate that results in the release of neutral Na atoms with an upper limit of 2.1 × 106 cm−2 s−1. The variability of the week-long ground-based observations can be explained by variations in the sources, including both PSD and ion-enhanced PSD, as well as possible temporal enhancements in meteoroid vaporization. Knowledge of both dayside and anti-sunward tail morphologies and radiances are necessary to correctly deduce the exospheric source rates, processes, velocity distribution, and surface interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号