首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   297篇
  免费   16篇
  国内免费   4篇
测绘学   8篇
大气科学   29篇
地球物理   72篇
地质学   110篇
海洋学   50篇
天文学   24篇
综合类   1篇
自然地理   23篇
  2021年   2篇
  2020年   5篇
  2019年   1篇
  2018年   11篇
  2017年   20篇
  2016年   11篇
  2015年   8篇
  2014年   13篇
  2013年   15篇
  2012年   8篇
  2011年   21篇
  2010年   19篇
  2009年   11篇
  2008年   18篇
  2007年   15篇
  2006年   11篇
  2005年   8篇
  2004年   21篇
  2003年   7篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   8篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   5篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   6篇
  1987年   4篇
  1986年   5篇
  1985年   12篇
  1984年   8篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有317条查询结果,搜索用时 140 毫秒
151.
Methane hydrate dissociation due to obliquity-driven temperature change has been suggested as a potential source of atmospheric methane plumes recently observed on Mars. This work uses both equilibrium and time-dependent models to determine how geothermal gradients change on Mars as a result of obliquity and predict how these changes affect gas hydrate stability zones (HSZs). The models predict that the depth to the HSZ decreases with increasing latitude for both CO2 and CH4 hydrate, with CO2 hydrate occurring at shallower depths than CH4 hydrate over all latitudes. The depth of the HSZ increases as surface temperatures warm and decreases as surface temperatures cool with changing obliquity, with the largest change in HSZ volume predicted near the equator and the poles. Therefore, changes in the depth to the HSZ may cause hydrate dissociation near the equator and poles as the geothermal gradient moves in and out of the hydrate stability field over hundreds of thousands of years. Sublimation of overlying ice containing diffused methane could account for recent observations of seasonal methane plumes on Mars. In addition, near-surface gas hydrate reservoirs may be preserved at mid-latitudes due to minimal changes in surface temperature with obliquity over geologic time scales. Comparisons of the predicted changes in the HSZ with hydrate dissociation and diffusion rates reveal that metastable hydrate may also remain in the near subsurface, especially at high latitudes, for millions to billions of years. The presence of methane hydrate in the near subsurface at midlatitudes could be an important analytical target for future Mars missions, as well as serving as a source of fuel for future spacecraft.  相似文献   
152.
Urbanization threatens headwater stream ecosystems globally. Watershed restoration practices, such as infiltration‐based stormwater management, are implemented to mitigate the detrimental effects of urbanization on aquatic ecosystems. However, their effectiveness for restoring hydrologic processes and watershed storage remains poorly understood. Our study used a comparative hydrology approach to quantify the effects of urban watershed restoration on watershed hydrologic function in headwater streams within the Coastal Plain of Maryland, USA. We selected 11 headwater streams that spanned an urbanization–restoration gradient (4 forested, 4 urban‐degraded, and 3 urban‐degraded) to evaluate changes in watershed hydrologic function from both urbanization and watershed restoration. Discrete discharge and continuous, high‐frequency rainfall‐stage monitoring were conducted in each watershed. These datasets were used to develop 6 hydrologic metrics describing changes in watershed storage, flowpath connectivity, or the resultant stream flow regime. The hydrological effects of urbanization were clearly observed in all metrics, but only 1 of the 3 restored watersheds exhibited partially restored hydrologic function. At this site, a larger minimum runoff threshold was observed relative to the urban‐degraded watersheds, suggesting enhanced infiltration of stormwater runoff within the restoration structure. However, baseflow in the stream draining this watershed remained low compared to the forested reference streams, suggesting that enhanced infiltration of stormwater runoff did not recharge subsurface storage zones contributing to stream baseflow. The highly variable responses among the 3 restored watersheds were likely due to the spatial heterogeneity of urban development, including the level of impervious cover and extent of the storm sewer network. This study yielded important knowledge on how restoration strategies, such as infiltration‐based stormwater management, modulated—or failed to modulate—hydrological processes affected by urbanization, which will help improve the design of future urban watershed management strategies. More broadly, we highlighted a multimetric approach that can be used to monitor the restoration of headwater stream ecosystems in disturbed landscapes.  相似文献   
153.
Although there has been recent focus on understanding spatial variability in hyporheic zone geochemistry across different morphological units under baseflow conditions, less attention has been paid to temporal responses of hyporheic zone geochemistry to non‐steady‐state conditions. We documented spatial and temporal variability of hyporheic zone geochemistry in response to a large‐scale storm event, Tropical Storm Irene (August 2011), across a pool–riffle–pool sequence along Chittenango Creek in Chittenango, NY, USA. We sampled stream water as well as pore water at 15 cm depth in the streambed at 14 locations across a 30 m reach. Sampling occurred seven times at daily intervals: once during baseflow conditions, once during the rising limb of the storm hydrograph, and five times during the receding limb. Principal component analysis was used to interpret temporal and spatial changes and dominant drivers in stream and pore water geochemistry (n = 111). Results show the majority of spatial variance in hyporheic geochemistry (62%) is driven by differential mixing of stream and ground water in the hyporheic zone. The second largest driver (17%) of hyporheic geochemistry was temporal dilution and enrichment of infiltrating stream water during the storm. Hyporheic sites minimally influenced by discharging groundwater (‘connected’ sites) showed temporal changes in water chemistry in response to the storm event. Connected sites within and upstream of the riffle reflected stream geochemistry throughout the storm, whereas downstream sites showed temporally lagged responses in some conservative and biogeochemically reactive solutes. This suggests temporal changes in hyporheic geochemistry at these locations reflect a combination of changes in infiltrating stream chemistry and hyporheic flowpath length and residence time. The portion of the study area strongly influenced by groundwater discharge increased in size throughout the storm, producing elevated Ca2+ and concentrations in the streambed, suggesting zones of localized groundwater inputs expand in response to storms. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
154.
155.
156.
以体长7.643±0.639mm的日本囊对虾秋繁同生群仔虾为实验对象,以氨氮为胁迫因子,在水温18.0±1.0oC、盐度20、p H 8.1±0.2的条件下,经确认其96h成活率略低于5%的氨氮攻毒质量浓度为52.37mg/L后,以此为氨氮急性攻毒实验质量浓度,借助显微扫描像素测量技术和多元分析方法定量研究了A、B、C、D、E实验群体(依次为氨氮攻毒0—24h、24—48h、48—72h、72—96 h时段内的死亡群体和氨氮攻毒96 h时的存活群体)间形态表型特征的差异。结果表明:(1)在所涉15项形态性状中,各实验群体间均无显著差异(P0.05)的性状仅为总长和第四腹节长;(2)在所涉17项形态比例指标中,各实验群体间均无显著差异(P0.05)的指标共计3项,依次为第五腹节长/总长、额剑长/头胸甲长和尾节高/尾节长,各实验群体间的欧氏距离均达到显著水平(P0.01),且均有随耐氨氮性能差异的增大而呈显著增大的趋势;(3)经主成分分析,提取到的5个特征值均大于1的主成分,累计贡献率达85.940%,其中第1主成分的贡献率高达46.121%,其载荷绝对值大于0.5的主要影响变量占形态比例指标总数的64.706%;(4)将氨氮急性攻毒处理所获E实验群体定义为选留群,其余实验群体统归为淘汰群,经判别分析,所建的Fisher分类函数方程组可较清晰地区分淘汰群和选留群个体,其中选留群和淘汰群个体的判别准确率P1分别为99%和86.75%,P2分别为88.20%和98.86%,两者综合判别准确率为92.88%。  相似文献   
157.
During August and September 2007, the lower Chesapeake Bay and its tributaries experienced a massive bloom of Cochlodinium polykrikoides Margalef (>104 cells per milliliter) that persisted for over a month, was extremely patchy, and at times penetrated into the Atlantic Ocean. The onset of the bloom coincided with a period of intense rainfall and stormwater runoff after a protracted summer drought period. Genetic evidence showed this species to be distinct from many Asian strains but similar to other North American strains. Populations dominated by C. polykrikoides took up a variety of nitrogenous compounds to support their growth and were able to mobilize additional sources of organic nutrients through peptide hydrolysis. Bioassays determined that C. polykrikoides exerted a lethal affect on juvenile fish and shellfish, causing 100% mortality of juvenile fish (Cyprinodon variegates) in less than 24 h and 20% mortality in juvenile American oysters (~21 mm; Crassostrea virginica) within 72 h.  相似文献   
158.
The in vitro solubilization and bioaccumulation of mercury and other trace metals by the intestinal fluid of the sea cucumber, Sclerodactyla briareus, was investigated. Sediments were incubated with intestinal fluid and the intestinal fluid was analyzed for the in vitro experiments. Experiments examined both procedural effects of in vitro solubilization and bioaccumulation of trace metals by the sea cucumber. Both solubilization and bioaccumulation were compared among the different metals. This comparison revealed that monomethylmercury (MMHg) solubilization and bioaccumulation is greater than HgI; Cd solubilization is higher than MMHg and HgI; and Cu and Pb solubilization is similar to MMHg and slightly higher than HgI. Solubilization and bioaccumulation was found to be very low, except for Cd, which had high relative solubilization but low bioaccumulation. It was concluded that while solubilization could be the rate-limiting step for certain metals, other factors, such as depuration and membrane transport, may influence overall bioaccumulation of the other metals.  相似文献   
159.
160.
Results are presented of a study of stable hydrogen and oxygen isotopes in rainfall and streamwaters for the Montseny and Prades areas in northeastern Spain: results cover the full year of 1991. The isotopic pattern for rainfall is similar for both areas: there is a wide range in isotopic contents and the results show a strong, near-linear trend, δ2H = 7.9 × δ18O + 9.8 (N = 59; r2 = 0.952), the ‘local meteoric line’. There is slight curvature to the data which may be related to the sources of water vapour forming the rainfall. Within the streams, the isotopic variability is much less than that of the rainfall although the data lie on, or very near to, the meteoric line. Data for detailed collections during storm events show more scatter than those collected regularly on a fortnightly basis. The event data show a linear feature that conforms to the local meteoric line. These results indicate that: (1) the main supply of water to the stream stormflow comes from water stored in the catchment prior to the event; (2) waters of more than one isotopic composition reside within the catchment and are transferable to the stream during storm events; (3) the main process of water transfer from the catchment back to the atmosphere comes from transpiration by the trees and (possibly) complete evaporation from the near-surface soil horizons and the tree canopy; (4) the isotopic technique cannot be used for quantitative hydrograph separation in this instance — at least two water types can be present within the catchment at any given time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号