首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   297篇
  免费   16篇
  国内免费   4篇
测绘学   8篇
大气科学   29篇
地球物理   72篇
地质学   110篇
海洋学   50篇
天文学   24篇
综合类   1篇
自然地理   23篇
  2021年   2篇
  2020年   5篇
  2019年   1篇
  2018年   11篇
  2017年   20篇
  2016年   11篇
  2015年   8篇
  2014年   13篇
  2013年   15篇
  2012年   8篇
  2011年   21篇
  2010年   19篇
  2009年   11篇
  2008年   18篇
  2007年   15篇
  2006年   11篇
  2005年   8篇
  2004年   21篇
  2003年   7篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   8篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   5篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   6篇
  1987年   4篇
  1986年   5篇
  1985年   12篇
  1984年   8篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有317条查询结果,搜索用时 31 毫秒
111.
Apatite incorporates variable and significant amounts of halogens (mainly F and Cl) in its crystal structure, which can be used to determine the initial F and Cl concentrations of magmas. The amount of chlorine in the apatite lattice also exerts an important compositional control on the degree of fission‐track annealing. Chlorine measurements in apatite have conventionally required electron probe microanalysis (EPMA). Laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) is increasingly used in apatite fission‐track dating to determine U concentrations and also in simultaneous U‐Pb dating and trace element measurements of apatite. Apatite Cl measurements by ICP‐MS would remove the need for EPMA but the high (12.97 eV) first ionisation potential makes analysis challenging. Apatite Cl data were acquired using two analytical set‐ups: a Resonetics M‐50 193 nm ArF Excimer laser coupled to an Agilent 7700× quadrupole ICP‐MS (using a 26 μm spot with an 8 Hz repetition rate) and a Photon Machines Analyte Excite 193 nm ArF Excimer laser coupled to a Thermo Scientific iCAP Qc (using a 30 μm spot with a 4 Hz repetition rate). Chlorine concentrations were determined by LA‐ICP‐MS (1140 analyses in total) for nineteen apatite occurrences, and there is a comprehensive EPMA Cl and F data set for 13 of the apatite samples. The apatite sample suite includes different compositions representative of the range likely to be encountered in natural apatites, along with extreme variants including two end‐member chlorapatites. Between twenty‐six and thirty‐nine isotopes were determined in each apatite sample corresponding to a typical analytical protocol for integrated apatite fission track (U and Cl contents) and U‐Pb dating, along with REE and trace element measurements. 35Cl backgrounds (present mainly in the argon gas) were ~ 45–65 kcps in the first set‐up and ~ 4 kcps in the second set‐up. 35Cl background‐corrected signals ranged from ~ 0 cps in end‐member fluorapatite to up to ~ 90 kcps in end‐member chlorapatite. Use of a collision cell in both analytical set‐ups decreased the low mass sensitivity by approximately an order of magnitude without improving the 35Cl signal‐to‐background ratio. A minor Ca isotope was used as the internal standard to correct for drift in instrument sensitivity and variations in ablation volume during sessions. The 35Cl/43Ca values for each apatite (10–20 analyses each) when plotted against the EPMA Cl concentrations yield excellently constrained calibration relationships, demonstrating the suitability of the analytical protocol and that routine apatite Cl measurements by ICP‐MS are achievable.  相似文献   
112.
Unleakable carbon, or the uncombusted methane and carbon dioxide associated with fossil fuel systems, constitutes a potentially large and heretofore unrecognized factor in determining use of Earth’s remaining fossil fuel reserves. Advances in extraction technology have encouraged a shift to natural gas, but the advantage of fuel switching depends strongly on mitigating current levels of unleakable carbon, which can be substantial enough to offset any climate benefit relative to oil or coal. To illustrate the potential warming effect of methane emissions associated with utilizable portions of our remaining natural gas reserves, we use recent data published in peer-reviewed journals to roughly estimate the impact of these emissions. We demonstrate that unless unleakable carbon is curtailed, up to 59–81% of our global natural gas reserves must remain underground if we hope to limit warming to 2°C from 2010 to 2050. Successful climate change mitigation depends on improved quantification of current levels of unleakable carbon and a determination of acceptable levels of these emissions within the context of international climate change agreements.

Policy relevance

It is imperative that companies, investors, and world leaders considering capital expenditures and policies towards continued investment in natural gas fuels do so with a complete understanding of how dependent the ultimate climate benefits are upon increased regulation of unleakable carbon, the uncombusted carbon-based gases associated with fossil fuel systems, otherwise referred to as ‘fugitive’, ‘leaked’, ‘vented’, ‘flared’, or ‘unintended’ emissions. Continued focus on combustion emissions alone, or unburnable carbon, undermines the importance of assessing the full climate impacts of fossil fuels, leading many stakeholders to support near-term mitigation strategies that rely on fuel switching from coal and oil to cleaner burning natural gas. The current lack of transparent accounting of unleakable carbon represents a significant gap in the understanding of what portions of the Earth’s remaining global fossil fuel reserves can be utilized while still limiting global warming to 2°C. Successful climate change mitigation requires that stakeholders confront the issue of both unburnable and unleakable carbon when considering continued investment in and potential expansion of natural gas systems as part of a climate change solution.  相似文献   
113.
114.
The importance of ecological management for reducing the vulnerability of biodiversity to climate change is increasingly recognized, yet frameworks to facilitate a structured approach to climate adaptation management are lacking. We developed a conceptual framework that can guide identification of climate change impacts and adaptive management options in a given region or biome. The framework focuses on potential points of early climate change impact, and organizes these along two main axes. First, it recognizes that climate change can act at a range of ecological scales. Secondly, it emphasizes that outcomes are dependent on two potentially interacting and countervailing forces: (1) changes to environmental parameters and ecological processes brought about by climate change, and (2) responses of component systems as determined by attributes of resistance and resilience. Through this structure, the framework draws together a broad range of ecological concepts, with a novel emphasis on attributes of resistance and resilience that can temper the response of species, ecosystems and landscapes to climate change. We applied the framework to the world’s largest remaining Mediterranean-climate woodland, the ‘Great Western Woodlands’ of south-western Australia. In this relatively intact region, maintaining inherent resistance and resilience by preventing anthropogenic degradation is of highest priority and lowest risk. Limited, higher risk options such as fire management, protection of refugia and translocation of adaptive genes may be justifiable under more extreme change, hence our capacity to predict the extent of change strongly impinges on such management decisions. These conclusions may contrast with similar analyses in degraded landscapes, where natural integrity is already compromised, and existing investment in restoration may facilitate experimentation with higher risk?options.  相似文献   
115.
Silicate melt inclusions (MI) commonly provide the best record of pre-eruptive H2O and CO2 contents of subvolcanic melts, but the concentrations of CO2 and H2O in the melt (glass) phase within MI can be modified by partitioning into a vapor bubble after trapping. Melt inclusions may also enclose vapor bubbles together with the melt (i.e., heterogeneous entrapment), affecting the bulk volatile composition of the MI, and its post-entrapment evolution. In this study, we use numerical modeling to examine the systematics of post-entrapment volatile evolution within MI containing various proportions of trapped vapor from zero to 95 volume percent. Modeling indicates that inclusions that trap only a vapor-saturated melt exhibit significant decrease in CO2 and moderate increase in H2O concentrations in the melt upon nucleation and growth of a vapor bubble. In contrast, inclusions that trap melt plus vapor exhibit subdued CO2 depletion at equivalent conditions. In the extreme case of inclusions that trap mostly the vapor phase (i.e., CO2–H2O fluid inclusions containing trapped melt), degassing of CO2 from the melt is negligible. In the latter scenario, the large fraction of vapor enclosed in the MI during trapping essentially serves as a buffer, preventing post-entrapment modification of volatile concentrations in the melt. Hence, the glass phase within such heterogeneously entrapped, vapor-rich MI records the volatile concentrations of the melt at the time of trapping. These numerical modeling results suggest that heterogeneously entrapped MI containing large vapor bubbles represent amenable samples for constraining pre-eruptive volatile concentrations of subvolcanic melts.  相似文献   
116.
Time-series temperature data can be summarized to provide valuable information on spatial variation in subsurface flow, using simple metrics. Such computationally light analysis is often discounted in favor of more complex models. However, this study demonstrates the merits of summarizing high-resolution temperature data, obtained from a fiber optic cable installation at several depths within a water delivery channel, into daily amplitudes and mean temperatures. These results are compared to fluid flux estimates from a one-dimensional (1D) advection-conduction model and to the results of a previous study that used a full three-dimensional (3D) model. At a depth of 0.1 m below the channel, plots of amplitude suggested areas of advective water movement (as confirmed by the 1D and 3D models). Due to lack of diurnal signal at depths below 0.1 m, mean temperature was better able to identify probable areas of water movement at depths of 0.25–0.5 m below the channel. The high density of measurements provided a 3D picture of temperature change over time within the study reach, and would be suitable for long-term monitoring in man-made environments such as constructed wetlands, recharge basins, and water-delivery channels, where a firm understanding of spatial and temporal variation in infiltration is imperative for optimal functioning.  相似文献   
117.
While restoring hyporheic flowpaths has been cited as a benefit to stream restoration structures, little documentation exists confirming that constructed restoration structures induce comparable hyporheic exchange to natural stream features. This study compares a stream restoration structure (cross‐vane) to a natural feature (riffle) concurrently in the same stream reach using time‐lapsed electrical resistivity (ER) tomography. Using this hydrogeophysical approach, we were able to quantify hyporheic extent and transport beneath the cross‐vane structure and the riffle. We interpret from the geophysical data that the cross‐vane and the natural riffle induced spatially and temporally unique hyporheic extent and transport, and the cross‐vane created both spatially larger and temporally longer hyporheic flowpaths than the natural riffle. Tracer from the 4.67‐h injection was detected along flowpaths for 4.6 h at the cross‐vane and 4.2 h at the riffle. The spatial extent of the hyporheic zone at the cross‐vane was 12% larger than that at the riffle. We compare ER results of this study to vertical fluxes calculated from temperature profiles and conclude significant differences in the interpretation of hyporheic transport from these different field techniques. Results of this study demonstrate a high degree of heterogeneity in transport metrics at both the cross‐vane and the riffle and differences between the hyporheic flowpath networks at the two different features. Our results suggest that restoration structures may be capable of creating sufficient exchange flux and timescales of transport to achieve the same ecological functions as natural features, but engineering of the physical and biogeochemical environment may be necessary to realize these benefits.  相似文献   
118.
119.
Potential climate-change impacts on the Chesapeake Bay   总被引:1,自引:0,他引:1  
We review current understanding of the potential impact of climate change on the Chesapeake Bay. Scenarios for CO2 emissions indicate that by the end of the 21st century the Bay region will experience significant changes in climate forcings with respect to historical conditions, including increases in CO2 concentrations, sea level, and water temperature of 50–160%, 0.7–1.6 m, and 2–6 °C, respectively. Also likely are increases in precipitation amount (very likely in the winter and spring), precipitation intensity, intensity of tropical and extratropical cyclones (though their frequency may decrease), and sea-level variability. The greatest uncertainty is associated with changes in annual streamflow, though it is likely that winter and spring flows will increase. Climate change alone will cause the Bay to function very differently in the future. Likely changes include: (1) an increase in coastal flooding and submergence of estuarine wetlands; (2) an increase in salinity variability on many time scales; (3) an increase in harmful algae; (4) an increase in hypoxia; (5) a reduction of eelgrass, the dominant submerged aquatic vegetation in the Bay; and (6) altered interactions among trophic levels, with subtropical fish and shellfish species ultimately being favored in the Bay. The magnitude of these changes is sensitive to the CO2 emission trajectory, so that actions taken now to reduce CO2 emissions will reduce climate impacts on the Bay. Research needs include improved precipitation and streamflow projections for the Bay watershed and whole-system monitoring, modeling, and process studies that can capture the likely non-linear responses of the Chesapeake Bay system to climate variability, climate change, and their interaction with other anthropogenic stressors.  相似文献   
120.
Conditions for the development of Kelvin-Helmholtz (K-H) waves on the magnetopause have been known for more than 15 years; more recently, spacecraft observations have stimulated further examination of the properties of K-H waves. For amagnetopause with no boundary layer, two different modes of surface waves have been identified and their properties have been investigated for various assumed orientations of magnetic field and flow velocity vectors. The power radiated into the magnetosphere from the velocity shear at the boundary has been estimated. Other calculations have focused on the consequences of finite thickness boundary layers, both uniform and non-uniform. The boundary layer is found to modify the wave modes present at the magnetopause and to yield a criterion for the wavelength of the fastest growing surface waves. The paper concludes by questioning the extent to which the inferences from boundary layer models are model dependent and identifies areas where further work is needed or anticipated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号