首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   958篇
  免费   34篇
  国内免费   8篇
测绘学   20篇
大气科学   73篇
地球物理   199篇
地质学   376篇
海洋学   91篇
天文学   171篇
综合类   5篇
自然地理   65篇
  2023年   5篇
  2022年   6篇
  2021年   19篇
  2020年   20篇
  2019年   14篇
  2018年   33篇
  2017年   30篇
  2016年   42篇
  2015年   30篇
  2014年   42篇
  2013年   56篇
  2012年   52篇
  2011年   60篇
  2010年   42篇
  2009年   64篇
  2008年   54篇
  2007年   52篇
  2006年   51篇
  2005年   42篇
  2004年   24篇
  2003年   34篇
  2002年   36篇
  2001年   27篇
  2000年   21篇
  1999年   15篇
  1998年   16篇
  1997年   10篇
  1996年   11篇
  1995年   10篇
  1994年   4篇
  1993年   9篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1988年   6篇
  1987年   5篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1967年   1篇
排序方式: 共有1000条查询结果,搜索用时 15 毫秒
41.
42.
Oued Awlitis 001 is a highly feldspathic, moderately equilibrated, clast‐rich, poikilitic impact melt rock lunar meteorite that was recovered in 2014. Its poikilitic texture formed due to moderately slow cooling, which judging from textures of rocks in melt sheets of terrestrial impact structures, is observed in impact melt volumes at least 100 m thick. Such coherent impact melt volumes occur in lunar craters larger than ~50 km in diameter. The composition of Oued Awlitis 001 points toward a crustal origin distant from incompatible‐element‐rich regions. Comparison of the bulk composition of Oued Awlitis 001 with Lunar Prospector 5° γ‐ray spectrometer data indicates a limited region of matches on the lunar farside. After its initial formation in an impact crater larger than ~50 km in diameter, Oued Awlitis 001 was excavated from a depth greater than ~50 m. The cosmogenic nuclide inventory of Oued Awlitis 001 records ejection from the Moon 0.3 Ma ago from a depth of at least 4 m and little mass loss due to ablation during its passage through Earth's atmosphere. The terrestrial residence time must have been very short, probably less than a few hundred years; its exact determination was precluded by a high concentration of solar cosmic ray‐produced 14C. If the impact that excavated Oued Awlitis 001 also launched it, this event likely produced an impact crater >10 km in diameter. Using petrologic constraints and Lunar Reconnaissance Orbiter Camera and Diviner data, we test Giordano Bruno and Pierazzo as possible launch craters for Oued Awlitis 001.  相似文献   
43.
With the advent of either sensitive space-born infrared cameras, or their high-resolution ground-based siblings, we are uncovering a new category of star clusters: the dust-enshrouded super-star clusters. These manifest themselves only beyond a few microns, as their shroud of dust is able to block all light emitted by the stars themselves. Here we present our results on the spectacular cluster in SBS 0335-052, a very metal-poor galaxy. We also point to the growing number of galaxy analogs to SBS 0335-052, revealing the possibility that these clusters signal a major mode of star formation in starbursts. We conclude by listing a number of open points these clusters raise, in particular with respect to high-redshift counterparts. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
44.
Neptune dominates the dynamics of the Kuiper Belt. By examining images of debris disks around other stars, we may be able to infer what kinds of planets shape the outer edges of other planetary systems. The last few years have seen a burst of progress in the modeling of azimuthal structures in debris disks created by planetary perturbers; new models incorporate planets on substantially eccentric orbits. I review this recent progress in debris disk dynamics and discuss the Kuiper Belt as a key example.  相似文献   
45.
46.
We use a secular representation to describe the long-term dynamics of transneptunian objects in mean-motion resonance with Neptune. The model applied is thoroughly described in Saillenfest et al. (Celest Mech Dyn Astron, doi: 10.1007/s10569-016-9700-5, 2016). The parameter space is systematically explored, showing that the secular trajectories depend little on the resonance order. High-amplitude oscillations of the perihelion distance are reported and localised in the space of the orbital parameters. In particular, we show that a large perihelion distance is not a sufficient criterion to declare that an object is detached from the planets. Such a mechanism, though, is found unable to explain the orbits of Sedna or \(2012\text {VP}_{113}\), which are insufficiently inclined (considering their high perihelion distance) to be possibly driven by such a resonant dynamics. The secular representation highlights the existence of a high-perihelion accumulation zone due to resonances of type 1:k with Neptune. That region is found to be located roughly at \(a\in [100;300]\) AU, \(q\in [50;70]\) AU and \(I\in [30;50]^{\circ }\). In addition to the flux of objects directly coming from the Scattered Disc, numerical simulations show that the Oort Cloud is also a substantial source for such objects. Naturally, as that mechanism relies on fragile captures in high-order resonances, our conclusions break down in the case of a significant external perturber. The detection of such a reservoir could thus be an observational constraint to probe the external Solar System.  相似文献   
47.
We use a secular model to describe the non-resonant dynamics of trans-Neptunian objects in the presence of an external ten-Earth-mass perturber. The secular dynamics is analogous to an “eccentric Kozai mechanism” but with both an inner component (the four giant planets) and an outer one (the eccentric distant perturber). By the means of Poincaré sections, the cases of a non-inclined or inclined outer planet are successively studied, making the connection with previous works. In the inclined case, the problem is reduced to two degrees of freedom by assuming a non-precessing argument of perihelion for the perturbing body. The size of the perturbation is typically ruled by the semi-major axis of the small body: we show that the classic integrable picture is still valid below about 70 AU, but it is progressively destroyed when we get closer to the external perturber. In particular, for \(a>150\) AU, large-amplitude orbital flips become possible, and for \(a>200\) AU, the Kozai libration islands at \(\omega =\pi /2\) and \(3\pi /2\) are totally submerged by the chaotic sea. Numerous resonance relations are highlighted. The most large and persistent ones are associated with apsidal alignments or anti-alignments with the orbit of the distant perturber.  相似文献   
48.
In Allende, a very complex compound chondrule (Allende compound chondrule; ACC) was found consisting of at least 16 subchondrules (14 siblings and 2 independents). Its overall texture can roughly be described as a barred olivine object (BO). The BO texture is similar in all siblings, but does not exist in the two independents, which appear as relatively compact olivine‐rich units. Because of secondary alteration of pristine Allende components and the ACC in particular, only limited predictions can be made concerning the original compositions of the colliding melt droplets. Based on textural and mineralogical characteristics, the siblings must have been formed on a very short time scale in a dense, local environment. This is also supported by oxygen isotope systematics showing similar compositions for all 16 subchondrules. Furthermore, the ACC subchondrules are isotopically distinct from typical Allende chondrules, indicating formation in or reaction with a more 16O‐poor reservoir. We modeled constraints on the particle density required at the ACC formation location, using textural, mineral‐chemical, and isotopic observations on this multicompound chondrule to define melt droplet collision conditions. In this context, we discuss the possible relationship between the formation of complex chondrules and the formation of macrochondrules and cluster chondrites. While macrochondrules may have formed under similar or related conditions as complex chondrules, cluster chondrites certainly require different formation conditions. Cluster chondrites represent a mixture of viscously deformed, seemingly young chondrules of different chemical and textural types and a population of older chondrules. Concerning the formation of ACC calculations suggest the existence of very local, kilometer‐sized, and super‐dense chondrule‐forming regions with extremely high solid‐to‐gas mass ratios of 1000 or more.  相似文献   
49.
The Sutter's Mill C‐type meteorite fall occurred on 22 April 2012 in and around the town of Coloma, California. The exact location of the meteorite fall was determined within hours of the event using a combination of eyewitness reports, weather radar imagery, and seismometry data. Recovery of the first meteorites occurred within 2 days and continued for months afterward. The recovery effort included local citizens, scientists, and meteorite hunters, and featured coordination efforts by local scientific institutions. Scientific analysis of the collected meteorites revealed characteristics that were available for study only because the rapid collection of samples had minimized terrestrial contamination/alteration. This combination of factors—rapid and accurate location of the event, participation in the meteorite search by the public, and coordinated scientific investigation of recovered samples—is a model that was widely beneficial and should be emulated in future meteorite falls. The tools necessary to recreate the Sutter's Mill recovery are available, but are currently underutilized in much of the world. Weather radar networks, scientific institutions with interest in meteoritics, and the interested public are available globally. Therefore, it is possible to repeat the Sutter's Mill recovery model for future meteorite falls around the world, each for relatively little cost with a dedicated researcher. Doing so will significantly increase the number of fresh meteorite falls available for study, provide meteorite material that can serve as the nuclei of new meteorite collections, and will improve the public visibility of meteoritics research.  相似文献   
50.
In radio astronomy, the Ultra-Long Wavelengths (ULW) regime of longer than 10 m (frequencies below 30 MHz), remains the last virtually unexplored window of the celestial electromagnetic spectrum. The strength of the science case for extending radio astronomy into the ULW window is growing. However, the opaqueness of the Earth’s ionosphere makes ULW observations by ground-based facilities practically impossible. Furthermore, the ULW spectrum is full of anthropogenic radio frequency interference (RFI). The only radical solution for both problems is in placing an ULW astronomy facility in space. We present a concept of a key element of a space-borne ULW array facility, an antenna that addresses radio astronomical specifications. A tripole–type antenna and amplifier are analysed as a solution for ULW implementation. A receiver system with a low power dissipation is discussed as well. The active antenna is optimized to operate at the noise level defined by the celestial emission in the frequency band 1 ? 30 MHz. Field experiments with a prototype tripole antenna enabled estimates of the system noise temperature. They indicated that the proposed concept meets the requirements of a space-borne ULW array facility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号