首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   10篇
  国内免费   4篇
测绘学   9篇
大气科学   17篇
地球物理   66篇
地质学   98篇
海洋学   9篇
天文学   4篇
综合类   6篇
自然地理   8篇
  2024年   2篇
  2023年   1篇
  2022年   7篇
  2021年   6篇
  2020年   8篇
  2019年   12篇
  2018年   17篇
  2017年   21篇
  2016年   18篇
  2015年   15篇
  2014年   18篇
  2013年   29篇
  2012年   12篇
  2011年   17篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2001年   3篇
  1998年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1980年   1篇
排序方式: 共有217条查询结果,搜索用时 12 毫秒
61.
The Iranian Guideline for Seismic Rehabilitation of Existing Buildings (GSREB), which is currently used for vulnerability assessment of existing buildings in Iran, is evaluated in this paper. The vulnerability of sample buildings of a variety stories with special steel moment resisting frames, designed according to the Standard No.2800 requirements, is assessed by GSREB. In the vulnerability assessment, different analysis methods were used and the results, in terms of usage ratio, defined as the ratio of the strength/deformation demand to the corresponding capacity, are compared. Numerical results show that some columns of these buildings do not satisfy the life safety performance criteria in the design hazard level. Moreover, the target displacement estimated by the Displacement Coefficient Method (DCM) is larger than the maximum displacement calculated by nonlinear dynamic analysis.  相似文献   
62.
63.
In this article we define inverse line graphs of directed graphs as a new framework for solving some classical network analysis problems. The extraction method and theories of inverse line graphs are explained in this article. It is shown that by changing the analysis space from the original directed graph to the inverse line graph, complex problems can be changed into simpler problems. We show the usefulness of the proposed framework in two particular applications: shortest path computations and the more general route planning. Considering the implementation result, we expect that this framework could be used in many more network analysis problems.  相似文献   
64.
65.
ABSTRACT

This paper investigates conventional and soft-computing methods for the estimation of suspended sediment concentration (SSC) and load (SSL) in rivers. Frequently used methods of sediment rate curve (SRC) and multi-nonlinear regression, and soft-computing methods of multi-layer perceptron, multi-linear regression and adaptive neuro-fuzzy inference system are implemented using various hydrological and hydraulic parameters for the Little Kickapoo Creek Watershed, Illinois, USA. All methods performed equally well in the estimation of SSL, without any noticeable outperformance from any from the methods. However, the application of soft-computing methods decreased SSC estimation errors considerably as compared to the results of SRC. The results are significant in the way they reconcile traditionally used hydrological parameters into the soft-computing methods. Overall, soft-computing methods are recommended for the estimation of SSC in rivers because of their reasonably better performance and ease of implementation.  相似文献   
66.
Mikaili  Omidreza  Rahimzadegan  Majid 《Natural Hazards》2022,111(3):2511-2529

As drought occurs in different climates, assessment of drought impacts on parameters such as vegetation cover is of utmost importance. Satellite remote sensing images with various spectral and spatial resolutions represent information about different land covers such as vegetation cover. Hence, the purpose of this study was to investigate the performance of satellite vegetation indices to monitor the agricultural drought on a local scale. In this regard, satellite images including Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) data were used to evaluate vegetation cover and their gradual changes effects on agricultural drought. Fars province in Iran with relatively low precipitation values was selected as the study area. Modified Perpendicular Drought Index (MPDI), MPDI1, Vegetation Condition Index (VCI), Normalized Difference Vegetation Index Anomalies (NDVIA), and Standardized Vegetation Index (SVI), were evaluated to select the remote sensing based index with the best performance in drought monitoring. The performance of such indices were investigated during 13 years (2000–2013) for MODIS and 29 years (1985–2013) for AVHRR. To assess the efficiency of the satellite indices in drought investigation, Standardized Precipitation Index (SPI) data of five selected stations were used for 3, 6, and 9 month periods on August. The results showed that NDVI-based vegetation indices had the highest correlation with SPI in cold climate and long-term timescale (6 and 9 month). The highest correlation values between remote sensing based indices and SPI were acquired, respectively, in 9-month and 6-month time-scales, with the values of 43.5% and 40%. Moreover, VCI showed the highest capability for agricultural drought investigating in different climate regions of the study area. Overall, the results proved that NDVI-based indices can be used for drought monitoring and assessment in a long-term timescale on a local time-scale.

  相似文献   
67.
Numerical simulation of groundwater flow used for the estimation of hydraulic and hydrologic parameters which is an important tool for the management of aquifers. This study presents the results of a mathematical model developed for the simulation of groundwater flow in Nahavand plain aquifer in the southwest Hamadan province. For this purpose Groundwater Modeling Software (GMS) was used which supports the MODFLOW-2000 code. After gathering required data such as the hydrological, hydrogeological and topography maps, a 3D hydrogeological model of plain was constructed with borehole and surface elevation data. Then MODFLOW was used for simulation of flow. After initial simulation of the flow, the model was calibrated in steady state with trial-and-error and parameter estimation methods the observed head of groundwater table monitoring data of 1997. Results of calibration show that error between observed head and computed head is in allowable range. Also results of computed head with model show that groundwater flow is in the direction of the dominate slope (southeast to northwest). Finally MODPATH code which simulates advective transport of particles was used for estimation of flow path and source of contaminants.  相似文献   
68.
Various groundwater potential zones for the assessment of groundwater availability in the Bojnourd basin have been investigated using remote sensing, GIS, and a probabilistic approach. Five independent groundwater factors, including topography, ground slope, stream density, geology units, lineament density, and a groundwater productivity factor, i.e., springs’ discharge, were applied. Discharge rates of 226 springs over the area were collected, and the probabilistic model was designed by the discharge rates of springs as the dependent variable. For training the probabilistic model, a ratio of 70/30% of springs’ discharge was applied and discharge rates of 151 springs were selected to randomly train the model. The frequency ratio for each factor was calculated, and the groundwater potential zones were extracted by summation of frequency ratio maps. The groundwater potential map was also classified into four classes, viz., “very good” (with a frequency ratio of >6.75), “good” (5.5FR6.75), “moderate” (4.75FR5.5), and “poor” (FR4.75). Then, the model was verified based on a success-rate curve method which resulted in obtaining an accuracy ratio of 75.77%. Finally, sensitivity analysis was applied by a factor removal method in five steps. Results reveal that topography factor has the biggest effect on the groundwater potential map and removing this factor eventuates in the lowest accuracy of the final map (AUC = 63. 73%). The groundwater potential map is fairly affected by removing the lineament density factor with an accuracy of 68.80%. Removing the lineament density factor has the lowest effect on the final map with accuracy of 68.80%.  相似文献   
69.
Seismic field data are often irregularly or coarsely sampled in space due to acquisition limits. However, complete and regular data need to be acquired in most conventional seismic processing and imaging algorithms. We have developed a fast joint curvelet‐domain seismic data reconstruction method by sparsity‐promoting inversion based on compressive sensing. We have made an attempt to seek a sparse representation of incomplete seismic data by curvelet coefficients and solve sparsity‐promoting problems through an iterative thresholding process to reconstruct the missing data. In conventional iterative thresholding algorithms, the updated reconstruction result of each iteration is obtained by adding the gradient to the previous result and thresholding it. The algorithm is stable and accurate but always requires sufficient iterations. The linearised Bregman method can accelerate the convergence by replacing the previous result with that before thresholding, thus promoting the effective coefficients added to the result. The method is faster than conventional one, but it can cause artefacts near the missing traces while reconstructing small‐amplitude coefficients because some coefficients in the unthresholded results wrongly represent the residual of the data. The key process in the joint curvelet‐domain reconstruction method is that we use both the previous results of the conventional method and the linearised Bregman method to stabilise the reconstruction quality and accelerate the recovery for a while. The acceleration rate is controlled through weighting to adjust the contribution of the acceleration term and the stable term. A fierce acceleration could be performed for the recovery of comparatively small gaps, whereas a mild acceleration is more appropriate when the incomplete data has a large gap of high‐amplitude events. Finally, we carry out a fast and stable recovery using the trade‐off algorithm. Synthetic and field data tests verified that the joint curvelet‐domain reconstruction method can effectively and quickly reconstruct seismic data with missing traces.  相似文献   
70.
In this research, a dynamic linear spatio-temporal model (DLSTM) was developed and evaluated for monthly streamflow forecasting. For parameter estimation, coupled expectation–maximization (EM) algorithm and Kalman filter was adopted. This combination enables the model to estimate the state vector and parameters concurrently. Different forecast scenarios including various combinations of upstream stations were considered for downstream station streamflow forecasting. Several statistical criteria, nonparametric and visual tests were used for model evaluation. Results indicated that the spatio-temporal model performed acceptably in almost all scenarios. The dynamic model was able to capitalize on coupled spatial and temporal information provided that there is spatial connectivity in the studied hydrometric stations network. Moreover, threshold level method was used for model evaluation in drought and wet periods. Results indicated that, in validation phase, the model was able to forecast the drought duration and volume deficit/over threshold, although volume deficit/over threshold could not be accurately simulated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号