Archaea play an important role in global carbon and nitrogen cycles. Archaeal lipids, such as isoprenoid glycerol diakyl glycerol tetraethers (iGDGTs), are important biomarkers tracing change in archaeal community structure and biogeochemical processes in the natural environments. In this research, the spatial distributions of archaeal lipids in the surface sediments of the Jiulong River (JR) and the Jiulong River estuary (JRE) were examined. GDGT-0 (containing zero cyclopentyl ring) and crenarchaeol were the most abundant iGDGTs in the JR and JRE. From the rivers to the estuary, the total iGDGTs, GDGT-0, crenarchaeol and archaeol concentrations showed significant spatial variation; in particular, GDGT-0 and archaeol in the river may be predominantly derived in situ from methanogens, whereas crenarchaeol in the estuary mainly derived in situ from Thaumarchaeota. We inferred that archaeal community was dominated by methanogens in the Jiulong River and by Thaumarchaeota in the Jiulong River estuary, which are consistent with change in archaeal community structure observed in other estuarine environments. 相似文献
Field observations of suspended particulate matter (SPM) in the Bohai Bay, China have not been widely reported. The aim of this paper is to describe the horizontal and vertical distribution of mass and volume concentrations of SPM, respectively, based on observed data at 312 stations in the northern Bohai Bay during summer of 2006. A numerical model ECOMSED coupled with a sediment transport module was also established to further discuss the mechanism of the thermocline effect on the vertical distribution of SPM. The mass concentrations of SPM exhibited high inshore values and low offshore values in the horizontal distribution; while in the vertical direction, characteristics of the volume concentration of SPM can be divided into two types: one with a sharp peak at depth of 10–15 m and another without. The peak value at the depth of the thermocline was resulted from concentrated phytoplankton. A numerical experiment further displayed that the thermocline can also prevent particles from being resuspended upward. 相似文献
Multi-dimensional Markov chain conditional simulation (or interpolation) models have potential for predicting and simulating categorical variables more accurately from sample data because they can incorporate interclass relationships. This paper introduces a Markov chain random field (MCRF) theory for building one to multi-dimensional Markov chain models for conditional simulation (or interpolation). A MCRF is defined as a single spatial Markov chain that moves (or jumps) in a space, with its conditional probability distribution at each location entirely depending on its nearest known neighbors in different directions. A general solution for conditional probability distribution of a random variable in a MCRF is derived explicitly based on the Bayes’ theorem and conditional independence assumption. One to multi-dimensional Markov chain models for prediction and conditional simulation of categorical variables can be drawn from the general solution and MCRF-based multi-dimensional Markov chain models are nonlinear. 相似文献
Water relation characteristics of the desert legumeAlhagi sparsifolia were investigated during the vegetation period from April to September 1999 in the foreland of Qira oasis at the southern fringe of the Taklamakan Desert, Xinjiang Uygur Autonomous Region of China. The seasonal variation of predawn water potentials and of diurnal water potential indicated thatAlhagi plants were well water supplied over the entire vegetation period. Decreasing values in the summer months were probably attributed to increasing temperatures and irradiation and therefore a higher evapotranspirative demand. Data from pressure-volume analysis confirmed thatAlhagi plants were not drought stressed and xylem sap flow measurements indicated thatAlhagi plants used large amounts of water during the summer months. Flood irrigation had no influence on water relations inAlhagi probably becauseAlhagi plants produced only few fine roots in the upper soil layers. The data indicate thatAlhagi sparsifolia is a drought-avoiding species that utilizes ground water by a deep roots system, which is the key characteristic to adjust the hyper-arid environment. Because growth and survival ofAlhagi depends on ground water supply, it is important that variations of ground water depth are kept to a minimum. The study will provide a theoretical basis for the restoration and management of natural vegetation around oasis in arid regions.