首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   1篇
测绘学   5篇
大气科学   15篇
地球物理   26篇
地质学   37篇
海洋学   13篇
天文学   8篇
综合类   1篇
自然地理   13篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   5篇
  2014年   2篇
  2013年   6篇
  2012年   4篇
  2011年   2篇
  2010年   4篇
  2009年   4篇
  2008年   9篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   7篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1995年   6篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   5篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有118条查询结果,搜索用时 12 毫秒
31.
32.
Data on soils with six Neoglacial moraines of the Klutlan Glacier have been compared with those from moraines at the warm, moist coastal site of Glacier Bay, 160 km south. Percentage organic matter increases rapidly for the first 100 to 150 yr of soil development and then continues to rise gradually for the next 100 yr. Soil pH falls from 8.0 in recent till to approximately 6.0 in 200-yr-old soils. Nitrogen levels in the mineral soil increase from near zero in recent tills to 0.7% in soils 175–200 yr old; organic horizons of soils associated with spruce forests in later successional stages contain approximately 1% nitrogen. Concentrations of certain inorganic phosphate ions in the different-aged soils increase continually throughout the succession. Data for nine chemical variables were subjected to a principal components analysis; the major pattern in the data reflects the differences between soils of low organic content and high pH present in early successional stages, and nutrient-rich soils with high organic content and low pH present after succession has progressed toward the spruce forest. These trends in soil development with time are strikingly similar to those reported from Glacier Bay, except that the changes in soil properties appear to be delayed by 50–100 yr at the Klutlan terminus. Although numerous signs of nitrogen deficiency have been identified in plants growing on new soils at Glacier Bay, none was observed visually in living plants or in nutrients measured in samples of foliage from three plant taxa (Epilobium latifolium, Salix spp., and Populus balsamifera) taken from the Klutlan moraines. Concentrations of nitrogen and other nutrients (Ca, Mg, K, total P) in the foliage samples show no clear trends with increasing soil development. Low temperatures, a short growing season, and very low mean annual precipitation probably limit plant growth and account for the delayed soil development on the Klutlan moraines.  相似文献   
33.
Plasma PFCs were measured in 157 bottlenose dolphins (Tursiops truncatus) sampled from two US southeast Atlantic sites (Charleston (CHS), SC and Indian River Lagoon (IRL), FL) during 2003-2005. ∑PFCs, perfluoroalkyl carboxylates (∑PFCAs), perfluoroalkyl sulfonates (∑PFSAs) and individual compounds were significantly higher in CHS dolphins for all age/sex categories compared to IRL dolphins. Highest ∑PFCs concentrations occurred in CHS juvenile dolphins (2340 ng/g w.w.); significantly higher than found in adults (1570 ng/g w.w. males; 1330 ng/g w.w. females). ∑PFCAs were much greater in CHS dolphins (≈ 21%) compared to IRL dolphins (≈ 7%); ∑PFSAs were 79% in CHS dolphins versus 93% in IRL dolphins. PFOS, the dominant compound, averaged 72% and 84%, respectively, in CHS and IRL dolphins. Decreasing PFC levels occurred with age on the bioaccumulation of PFCs in both sites. These observations suggest PFC accumulation in these two dolphin populations are influenced by site-specific exposures with significantly higher levels in CHS dolphins.  相似文献   
34.
The Kathmandu Basin in Nepal contains up to 550 m of Pliocene-Quaternary fluvio-lacustrine sediments which have formed a dual aquifer system. The unconfined sand and gravel aquifer is separated by a clay aquitard, up to 200 m thick, from the deeper, confined aquifer, comprised of Pliocene sand and gravel beds, intercalated with clay, peat, and lignite. The confined aquifer currently provides an important water supply to the central urban area but there are increasing concerns about its sustainability due to overexploitation. A limited number of determinations of the radioisotope 36Cl have been made on bore waters in the basin, allowing us to postulate on the age of ground water in the deeper, confined aquifer. Ground water evolution scenarios based on radioisotope decay, gradual dissolution of formational salts as the ground waters move downgradient, and flow velocity estimations produce comparable ground water ages for the deep waters, ranging from 200,000 to 400,000 years. From these ages, we deduce a mean ground water flow velocity of only 45 mm/year from recharge in the northeast to the main extraction region 15 km to the southwest. We thus estimate current recharge at about 5 to 15 mm/year, contributing 40,000 to 1.2 million m3/year to the ground water system. Current ground water extraction is estimated to be 20 times this amount. The low specific discharge confirms that the resource is being mined, and, based on current projections, reserves will be used up within 100 years.  相似文献   
35.
Dissolved oxygen (DO) concentrations influence many biogeochemical processes in groundwater systems but studies of temporal variability in DO are lacking. In this study, we used an optical DO probe to measure rapid changes in concentration due to plant‐groundwater interaction at an alluvial aquifer field site in Iowa. Diurnal DO concentrations were observed during mid‐ to late‐summer when soil conditions were dry, fluctuating approximately 0.2 to 0.3 mg/L on a daily basis. DO fluctuations in groundwater were out‐of‐phase with diurnal water table fluctuations, increasing during the day and decreasing at night. DO consumption at night is likely due to increased soil autotrophic and heterotrophic respiration linked with patterns of carbon supply derived from daytime photosynthetic activity, and consistent with available literature on diurnal soil respiration patterns. Although more work is needed to quantify specific processes, our results indicate the potential usefulness of the new optical DO technology to reveal insights regarding many ecohydrological processes.  相似文献   
36.
ABSTRACT. Multiple overlapping and replicate pollen stratigraphies from Canal de la Puntilla (40°57’09”S, 72°54’18”W, 120 m elevation) reveal that a Nothofagus dombeyi-type parkland occupied the Valle Central of the Chilean Lake District during the portion of the Last Glacial Maximum between 20,200 and about 14,600 14C yr BP . Dominating this landscape was Nothofagus dombeyi-type and Gramineae, accompanied by taxa commonly found today in Subantarctic environments and above the Andean tree-line in the Lake District (Perezia-type, Valeriana, and Huperzia selago), along with cushion bog taxa characteristic of Magellanic Moorlands (Donatia fascicularis and Astelia pumila). Within this open landscape Nothofagus dombeyi-type expanded between 20,200 and 15,800 14C yr BP , interrupted by a brief reversal between 19,200 and 18,800 14 C yr BP and followed by a prominent increase in Gramineae pollen between 15,800 and about 14,600 14C yr BP . A major rise of Nothofagus dombeyi-type began at about 14,600 14C yr BP , followed by decline in non-arboreal taxa and a remarkable expansion of North Patagonian Rain Forest taxa in pulses centered at 14,200 and 13,000 14C yr BP . Podocarpus nubigena expanded between 12,200 and 9800 14C yr BP , along with increases in Misodendrum and Maytenus disticha-type between 11,000 and 9800 14C yr BP. Paleovegetation records suggest that mean annual temperature was 6–7°C colder than at present during the coldest episodes between 20,200 and about 14,600 14C yr BP , with twice the modern annual precipitation between 20,200 and 13,000 14C yr BP, suggesting a northward shift and intensification of westerly stormtracks. Slight climate warming occurred between 20,200 and 15,800 14C yr BP , interrupted by cooling events at 19,200 and 15,800 14C yr BP . The initial warming of the last termination started at 14,600 14C yr BP , followed by warming pulses at 14,200 and 13,000 14C yr BP. These events brought glacial conditions to a cool-temperate climate, slightly cooler and wetter than modern climate, accounting for a total temperature recovery of ≥5°C by about 13,000 14C yr BP . A general reversal in trend is inferred with cooling events at 12,200 and 11,000 14C yr BP .  相似文献   
37.
38.
An array consisting of ocean bottom seismometer and on-bottom hydrophones, was used to conduct a seismic experiment on 0.4 Ma crust east of the Juan de Fuca Ridge. Seismic sources were large (>50 kg) explosive charges detonated by SUS devices set to explode at 1829 or 2438 m nominal depth. The objectives of the experiment were to determine the compressional wave velocity and attenuation structures of the uppermost 500 m depth. The relative positions of shots and receivers were originally determined by treating each shot-receiver pair independently, via raytracing of various water waves. Due to the reflection of some of these water waves by the rough bottom, significant scatter resulted, preventing a determination of a physically realizable velocity-depth function. A new method is described that co-locates shot and receiver positions, including receiver depths consistent withseabeam bathymetry, using only the water waves that do not interact with the bottom. Several potential pitfalls are outlined using this method. A stable solution could only be achieved by discarding shots located well outside the array. The water path corrections were applied to the refracted arrivals, again using theseabeam bathymetry. The joint inversion location procedure, along with the use of precise gridded bathymetry, reduced the travel time scatter to a level whereby a velocity-depth function could be determined. The results, using only the hydrophone data, indicate an initial velocity at the seafloor of 2.7 km s-1 with gradients from 4.6 s-1 slowly decreasing to 4.1 s-1 at 679 m depth. This velocity is similar to others conducted over very young oceanic crust, and can be interpreted as being due to a high porosity at the surface, due to cracks, fissures, and open pores, which rapidly diminish with depth.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号