首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   5篇
测绘学   1篇
大气科学   5篇
地球物理   10篇
地质学   12篇
海洋学   4篇
天文学   9篇
自然地理   1篇
  2020年   3篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   5篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2000年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有42条查询结果,搜索用时 0 毫秒
41.
During mid-Oligocene to early-Miocene times the northeastern Afro-Arabian plate underwent changes, from continental breakup along the Red Sea in the south, to continental collision with Eurasia in the north and formation of the N–S trending Dead Sea fault plate boundary. Concurrent uplift and erosion of the entire Levant area led to an incomplete sedimentary record, obscuring reconstructions of the transition between the two tectonic regimes. New well data, obtained on the continental shelf of the central Levant margin (Qishon Yam 1), revealed a uniquely undisturbed sedimentary sequence which covers this time period. Evaporitic facies found in this well have only one comparable location in the entire eastern Mediterranean area (onland and offshore) over the same time frame — the Red Sea–Suez rift system. Analysis of 4150 km of multi and single-channel seismic profiles, offshore central Levant, shows that the sequence was deposited in a narrow basin, restricted to the continental shelf. This basin (the Haifa Basin) evolved as a half graben along the NW trending Carmel fault, which at present is one of the main branches of the Dead Sea fault. Re-evaluation of geological data onland, in view of the new findings offshore, indicates that the Haifa basin is the northwestern-most of a larger series of basins, comprising a failed rift along the Qishon–Sirhan NW–SE trend. This failed rift evolved spatially parallel to the Red Sea–Suez rift system, and at the same time frame. The Carmel fault would therefore seem to be related to processes occurring several million years earlier than previously thought, before the formation of the Dead Sea fault. The development of a series of basins in conjunction with a young spreading center is a known phenomenon in other regions worldwide; however this is the only known example from across the Arabian plate.  相似文献   
42.
Biased monitoring of fresh water-salt water mixing zone in coastal aquifers   总被引:2,自引:0,他引:2  
In coastal aquifers, significant vertical hydraulic gradients are formed where fresh water and underlying salt water discharge together upward to the seafloor. Monitoring boreholes may act as "short circuits" along these vertical gradients, connecting between the higher and the lower hydraulic head zones. When a sea tide is introduced, the fluctuations of both the water table and the depth of the mixing zone are also biased due to this effect. This problem is intensified in places of long-screen monitoring boreholes, which are common in many places in the world. For example, all approximately 500 boreholes of the fresh water-salt water mixing zone in the coastal aquifer of Israel are installed with 10 to 50 m long screens. We present field measurements of these fluctuations, along with a three-dimensional numerical model. We find that the in-well fluctuation magnitude of the mixing zone is an order of magnitude larger than that in the porous media of the actual aquifer. The primary parameters that affect the magnitude of this bias are the anisotropy of the aquifer conductivity and the borehole hydraulic parameters. With no sea tide, borehole interference is higher for the anisotropic case because the vertical hydraulic gradients are high. When tides are introduced, the amplitude of the mixing zone fluctuation is higher for the isotropic case because the overall effective hydraulic conductivity is greater than the conductivity in the anisotropic case. In the aquifer, the fresh water-salt water mixing zone fluctuations are dampened, and tens of meters inland from the shoreline, the fluctuations are on the order of few centimeters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号