首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   586篇
  免费   17篇
  国内免费   11篇
测绘学   19篇
大气科学   89篇
地球物理   119篇
地质学   235篇
海洋学   51篇
天文学   69篇
自然地理   32篇
  2024年   1篇
  2023年   2篇
  2022年   7篇
  2021年   9篇
  2020年   12篇
  2019年   14篇
  2018年   15篇
  2017年   12篇
  2016年   20篇
  2015年   15篇
  2014年   28篇
  2013年   43篇
  2012年   34篇
  2011年   46篇
  2010年   28篇
  2009年   60篇
  2008年   37篇
  2007年   34篇
  2006年   35篇
  2005年   33篇
  2004年   20篇
  2003年   8篇
  2002年   31篇
  2001年   9篇
  2000年   6篇
  1999年   7篇
  1998年   2篇
  1997年   9篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1992年   2篇
  1991年   2篇
  1990年   6篇
  1989年   2篇
  1988年   5篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1971年   1篇
排序方式: 共有614条查询结果,搜索用时 15 毫秒
51.
52.
The surface ocean explains a considerable part of the inter-annual Tropical Atlantic variability. The present work makes use of observational datasets to investigate the effect of freshwater flow on sea surface salinity (SSS) and temperature (SST) in the Gulf of Guinea. In particular, the Congo River discharges a huge amount of freshwater into the ocean, affecting SSS in the Eastern Equatorial Atlantic (EEA) and stratifying the surface layers. The hypothesis is that an excess of river runoff emphasize stratification, influencing the ocean temperature. In fact, our findings show that SSTs in the Gulf of Guinea are warmer in summers following an anomalously high Congo spring discharge. Vice versa, when the river discharges low freshwater, a cold anomaly appears in the Gulf. The response of SST is not linear: temperature anomalies are considerable and long-lasting in the event of large freshwater flow, while in dry years they are less remarkable, although still significant. An excess of freshwater seems able to form a barrier layer, which inhibits vertical mixing and the entrainment of the cold thermocline water into the surface. Other processes may contribute to SST variability, among which the net input of atmospheric freshwater falling over EEA. Likewise the case of continental runoff from Congo River, warm anomalies occur after anomalously rainy seasons and low temperatures follow dry seasons, confirming the effect of freshwater on SST. However, the two sources of freshwater anomaly are not in phase, so that it is possible to split between atypical SST following continental freshwater anomalies and rainfall anomalies. Also, variations in air-sea fluxes can produce heating and cooling of the Gulf of Guinea. Nevertheless, atypical SSTs cannot be ascribed to fluxes, since the temperature variation induced by them is not sufficient to explain the SST anomalies appearing in the Gulf after anomalous peak discharges. The interaction processes between river runoff, sea surface salinity and temperature play an effective role in the interannual variability in the EEA region. Our results add a new source of variability in the area, which was often neglected by previous studies.  相似文献   
53.
Summary Using ECMWF analyses and daily rain amounts of 569 stations in Western Africa for summer 1989, the study documents the composite structure of the 6–9 day oscillation and its influence on rain. Rain is modulated by vorticity as displayed in the wave composite. There are rainfall maxima coincident with cyclonic vorticity and rainfall minima coincident with anticyclonic vorticity at the 700hPa level, at 17.5°N and 7.5°N.With 6 Figures  相似文献   
54.
The second field campaign of the Cloud Ice Mountain Experiment (CIME) project took place in February 1998 on the mountain Puy de Dôme in the centre of France. The content of residual aerosol particles, of H2O2 and NH3 in cloud droplets was evaluated by evaporating the drops larger than 5 μm in a Counterflow Virtual Impactor (CVI) and by measuring the residual particle concentration and the released gas content. The same trace species were studied behind a round jet impactor for the complementary interstitial aerosol particles smaller than 5 μm diameter. In a second step of experiments, the ambient supercooled cloud was converted to a mixed phase cloud by seeding the cloud with ice particles by the gas release from pressurised gas bottles. A comparison between the physical and chemical characteristics of liquid drops and ice particles allows a study of the fate of the trace constituents during the presence of ice crystals in the cloud.In the present paper, an overview is given of the CIME 98 experiment and the instrumentation deployed. The meteorological situation during the experiment was analysed with the help of a cloud scale model. The microphysics processes and the behaviour of the scavenged aerosol particles before and during seeding are analysed with the detailed microphysical model ExMix. The simulation results agreed well with the observations and confirmed the assumption that the Bergeron–Findeisen process was dominating during seeding and was influencing the partitioning of aerosol particles between drops and ice crystals. The results of the CIME 98 experiment give an insight on microphysical changes, redistribution of aerosol particles and cloud chemistry during the Bergeron–Findeisen process when acting also in natural clouds.  相似文献   
55.
56.
This study presents an analysis of climate-change impacts on the water resources of two basins located in northern France, by integrating four sources of uncertainty: climate modelling, hydrological modelling, downscaling methods, and emission scenarios. The analysis focused on the evolution of the water budget, the river discharges and piezometric heads. Seven hydrological models were used, from lumped rainfall-discharge to distributed hydrogeological models, and led to quite different estimates of the water-balance components. One of the hydrological models, CLSM, was found to be unable to simulate the increased water stress and was, thus, considered as an outlier even though it gave fair results for the present day compared to observations. Although there were large differences in the results between the models, there was a marked tendency towards a decrease of the water resource in the rivers and aquifers (on average in 2050 about ?14 % and ?2.5 m, respectively), associated with global warming and a reduction in annual precipitation (on average in 2050 +2.1 K and ?3 %, respectively). The uncertainty associated to climate models was shown to clearly dominate, while the three others were about the same order of magnitude and 3–4 times lower. In terms of impact, the results found in this work are rather different from those obtained in a previous study, even though two of the hydrological models and one of the climate models were used in both studies. This emphasizes the need for a survey of the climatic-change impact on the water resource.  相似文献   
57.
ITRF2008: an improved solution of the international terrestrial reference frame   总被引:15,自引:38,他引:15  
ITRF2008 is a refined version of the International Terrestrial Reference Frame based on reprocessed solutions of the four space geodetic techniques: VLBI, SLR, GPS and DORIS, spanning 29, 26, 12.5 and 16?years of observations, respectively. The input data used in its elaboration are time series (weekly from satellite techniques and 24-h session-wise from VLBI) of station positions and daily Earth Orientation Parameters (EOPs). The ITRF2008 origin is defined in such a way that it has zero translations and translation rates with respect to the mean Earth center of mass, averaged by the SLR time series. Its scale is defined by nullifying the scale factor and its rate with respect to the mean of VLBI and SLR long-term solutions as obtained by stacking their respective time series. The scale agreement between these two technique solutions is estimated to be 1.05 ± 0.13 ppb at epoch 2005.0 and 0.049 ± 0.010?ppb/yr. The ITRF2008 orientation (at epoch 2005.0) and its rate are aligned to the ITRF2005 using 179 stations of high geodetic quality. An estimate of the origin components from ITRF2008 to ITRF2005 (both origins are defined by SLR) indicates differences at epoch 2005.0, namely: ?0.5, ?0.9 and ?4.7?mm along X, Y and Z-axis, respectively. The translation rate differences between the two frames are zero for Y and Z, while we observe an X-translation rate of 0.3?mm/yr. The estimated formal errors of these parameters are 0.2?mm and 0.2?mm/yr, respectively. The high level of origin agreement between ITRF2008 and ITRF2005 is an indication of an imprecise ITRF2000 origin that exhibits a Z-translation drift of 1.8?mm/yr with respect to ITRF2005. An evaluation of the ITRF2008 origin accuracy based on the level of its agreement with ITRF2005 is believed to be at the level of 1?cm over the time-span of the SLR observations. Considering the level of scale consistency between VLBI and SLR, the ITRF2008 scale accuracy is evaluated to be at the level of 1.2?ppb (8?mm at the equator) over the common time-span of the observations of both techniques. Although the performance of the ITRF2008 is demonstrated to be higher than ITRF2005, future ITRF improvement resides in improving the consistency between local ties in co-location sites and space geodesy estimates.  相似文献   
58.
Mitigating and adapting to global changes requires a better understanding of the response of the Biosphere to these environmental variations. Human disturbances and their effects act in the long term (decades to centuries) and consequently, a similar time frame is needed to fully understand the hydrological and biogeochemical functioning of a natural system. To this end, the ‘Centre National de la Recherche Scientifique’ (CNRS) promotes and certifies long-term monitoring tools called national observation services or ‘Service National d'Observation’ (SNO) in a large range of hydrological and biogeochemical systems (e.g., cryosphere, catchments, aquifers). The SNO investigating peatlands, the SNO ‘Tourbières’, was certified in 2011 ( https://www.sno-tourbieres.cnrs.fr/ ). Peatlands are mostly found in the high latitudes of the northern hemisphere and French peatlands are located in the southern part of this area. Thus, they are located in environmental conditions that will occur in northern peatlands in coming decades or centuries and can be considered as sentinels. The SNO Tourbières is composed of four peatlands: La Guette (lowland central France), Landemarais (lowland oceanic western France), Frasne (upland continental eastern France) and Bernadouze (upland southern France). Thirty target variables are monitored to study the hydrological and biogeochemical functioning of the sites. They are grouped into four datasets: hydrology, fluvial export of organic matter, greenhouse gas fluxes and meteorology/soil physics. The data from all sites follow a common processing chain from the sensors to the public repository. The raw data are stored on an FTP server. After operator or automatic processing, data are stored in a database, from which a web application extracts the data to make them available ( https://data-snot.cnrs.fr/data-access/ ). Each year at least, an archive of each dataset is stored in Zenodo, with a digital object identifier (DOI) attribution ( https://zenodo.org/communities/sno_tourbieres_data/ ).  相似文献   
59.
This study investigates the possible correspondence between catchment structure, as represented by perceptual hydrological models developed from fieldwork investigations, and mathematical model structures, selected on the basis of reproducing observed catchment hydrographs. Three Luxembourgish headwater catchments are considered, where previous fieldwork suggested distinct flow‐generating mechanisms and hydrological dynamics. A set of lumped conceptual model structures are hypothesized and implemented using the SUPERFLEX framework. Following parameter calibration, the model performance is examined in terms of predictive accuracy, quantification of uncertainty, and the ability to reproduce the flow–duration curve signature. Our key research question is whether differences in the performance of the conceptual model structures can be interpreted based on the dominant catchment processes suggested from fieldwork investigations. For example, we propose that the permeable bedrock and the presence of multiple aquifers in the Huewelerbach catchment may explain the superior performance of model structures with storage elements connected in parallel. Conversely, model structures with serial connections perform better in the Weierbach and Wollefsbach catchments, which are characterized by impermeable bedrock and dominated by lateral flow. The presence of threshold dynamics in the Weierbach and Wollefsbach catchments may favour nonlinear models, while the smoother dynamics of the larger Huewelerbach catchment were suitably reproduced by linear models. It is also shown how hydrologically distinct processes can be effectively described by the same mathematical model components. Major research questions are reviewed, including the correspondence between hydrological processes at different levels of scale and how best to synthesize the experimentalist's and modeller's perspectives. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号