首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27114篇
  免费   5010篇
  国内免费   6563篇
测绘学   1321篇
大气科学   6026篇
地球物理   7247篇
地质学   13325篇
海洋学   2997篇
天文学   1384篇
综合类   3157篇
自然地理   3230篇
  2024年   86篇
  2023年   399篇
  2022年   1130篇
  2021年   1268篇
  2020年   1065篇
  2019年   1202篇
  2018年   1507篇
  2017年   1344篇
  2016年   1593篇
  2015年   1305篇
  2014年   1604篇
  2013年   1541篇
  2012年   1430篇
  2011年   1438篇
  2010年   1582篇
  2009年   1552篇
  2008年   1384篇
  2007年   1329篇
  2006年   1077篇
  2005年   940篇
  2004年   800篇
  2003年   822篇
  2002年   760篇
  2001年   721篇
  2000年   948篇
  1999年   1427篇
  1998年   1140篇
  1997年   1129篇
  1996年   1021篇
  1995年   893篇
  1994年   842篇
  1993年   711篇
  1992年   559篇
  1991年   442篇
  1990年   330篇
  1989年   302篇
  1988年   270篇
  1987年   175篇
  1986年   151篇
  1985年   109篇
  1984年   71篇
  1983年   55篇
  1982年   69篇
  1981年   55篇
  1980年   29篇
  1979年   27篇
  1978年   10篇
  1977年   5篇
  1976年   7篇
  1958年   27篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
991.
The Yanjiagou deposit, located in the central North China Craton (NCC), is a newly found porphyry‐type Mo deposit. The Mo mineralization here is spatially associated with the Mapeng batholith. In this study, we identify four stages of ore formation in this deposit: pyrite phyllic stage (I), quartz–pyrite stage (II), quartz–pyrite–molybdenite stage (III), which is the main mineralization stage, and quartz–carbonate stage (IV). We present sulphur and lead isotope data on pyrite, and rhenium and osmium isotopes of molybdenite from the porphyry deposit and evaluate the timing and origin of ore formation. The δ34S values of the pyrite range from ‐1.1‰ to −0.6‰, with an average of −0.875‰, suggesting origin from a mixture of magmatic/mantle sources and the basement rocks. The Pb isotope compositions of the pyrite show a range of 16.369 to 17.079 for 206Pb/204Pb, 15.201 to 15.355 for 207Pb/204Pb, and 36.696 to 37.380 for 208Pb/204Pb, indicating that the ore‐forming materials were derived from a mixture of lower crust (or basement rocks) and mantle. Rhenium contents in molybdenite samples from the main ore stage are between 74.73 to 254.43 ppm, with an average of 147.9 ppm, indicating a mixed crustal‐mantle source for the metal. Eight molybdenite separates yield model ages ranging from 124.17 to 130.80 Ma and a mean model age of 128.46 Ma. An isochron age of 126.7 ± 1.1 Ma (MSWD = 2.1, initial 187Os = 0.0032 ± 0.0012 ppb) is computed, which reveals a close link between the Mo mineralization and the magmatism that generated the Mapeng batholith. The age is close to the zircon U–Pb age of ca. 130 Ma from the batholith reported in a recent study. The age is also consistent with the timing of mineralization in the Fuping ore cluster in the central NCC, as well as the peak time of lithosphere thinning and destruction of the NCC. We evaluate the spatio‐temporal distribution of the Mo deposits in the NCC and identify three important molybdenum provinces along the northern and southern margins of the craton formed during three distinct episodes: Middle to Late Triassic (240–220 Ma), Early Jurassic (190–175 Ma), and Late Jurassic to Early Cretaceous (150–125 Ma). The third period is considered to mark the most important metallogenic event, coinciding with the peak of lithosphere thinning and craton destruction in the NCC. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
992.
In this study, the multi-resolution Kalman filter (MKF) algorithm, which can handle multi-resolution problems with high computational efficiency, was used to blend two emissivity products: the Global LAnd Surface Satellite (GLASS) (BBE) product and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) narrowband emissivity (NBE) product. The ASTER NBE product was first converted into a BBE product. A new detrending method was used to transfer the BBEs into a process suitable for the MKF. The new detrending method was superior to the two existing methods. Finally, both the de-trended GLASS and ASTER BBE products were incorporated into the MKF framework to obtain the optimal estimation at each scale. Field measurements collected in North America were used to validate the integrated BBEs. Visually, the fusion map showed good continuity, with the exception of the border areas, and the quality of the fusion map was better than that of the original maps. The validation results indicate that the MKF improved the BBE product accuracy at the coarse scale. In addition, the MKF was capable of recovering missing pixels at a finer scale.  相似文献   
993.
994.
995.
996.
997.
998.
999.
The relationship between surface water and groundwater not only influences the water quantity, but also affects the water quality. The stable isotopes (δD, δ 18O) and hydrochemical compositions in water samples were analysed in the Second Songhua River basin. The deep groundwater is mainly recharged from shallow groundwater in the middle and upper reaches. The shallow groundwater is discharged to rivers in the downstream. The runoff from upper reaches mainly contributed the river flow in the downstream. The CCME WQI indicated that the quality of surface water and groundwater was ‘Fair’. The mixing process between surface water and groundwater was simulated by the PHREEQC code with the results from the stable isotopes. The interaction between surface water and groundwater influences the composition of ions in the mixing water, and further affects the water quality with other factors.  相似文献   
1000.
Variability in precipitation is critical for the management of water resources. In this study, the research entropy base concept was applied to investigate spatial and temporal variability of the precipitation during 1964–2013 in the Songhua River basin of Heilongjiang Province in China. Sample entropy was applied on precipitation data on a monthly, seasonally, annually, decade scale and the number of rainy days for each selected station. Intensity entropy and apportionment entropy were used to calculate the variability over individual year and decade, respectively. Subsequently, Spearman’s Rho and Mann–Kendall tests were applied to observe for trends in the precipitation time series. The statistics of sample disorder index showed that the precipitation during February (mean 1.09, max. 1.26 and min. 0.80), April (mean 1.12, max. 1.29 and min. 0.99) and July (mean 1.10, max. 1.20 and min. 0.98) contributed significantly higher than those of other months. Overall, the contribution of the winter season was considerably high with a standard deviation of 0.10. The precipitation variability on decade basis was observed to increase from decade 1964–1973 and 1994–2003 with a mean value of decadal apportionment disorder index 0.023 and 0.053, respectively. In addition, the Mann–Kendall test value (1.90) showed a significant positive trend only at the Shangzhi station.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号