首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   4篇
  国内免费   12篇
测绘学   7篇
大气科学   14篇
地球物理   53篇
地质学   40篇
海洋学   30篇
天文学   28篇
综合类   9篇
自然地理   5篇
  2021年   4篇
  2020年   3篇
  2018年   3篇
  2017年   1篇
  2016年   11篇
  2015年   4篇
  2014年   3篇
  2013年   8篇
  2012年   8篇
  2011年   12篇
  2010年   4篇
  2009年   11篇
  2008年   12篇
  2007年   5篇
  2006年   5篇
  2005年   9篇
  2004年   2篇
  2003年   7篇
  2002年   4篇
  2001年   5篇
  2000年   6篇
  1999年   4篇
  1998年   3篇
  1997年   4篇
  1996年   6篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1990年   1篇
  1989年   2篇
  1987年   4篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
  1971年   2篇
  1965年   1篇
排序方式: 共有186条查询结果,搜索用时 203 毫秒
101.
The horizontal distribution of the epipelagic zooplankton communities in the western Arctic Ocean was studied during August–October 2008. Zooplankton abundance and biomass were higher in the Chukchi Sea, and ranged from 3,000 to 274,000 ind. m?2 and 5–678 g WM m?2, respectively. Copepods were the most dominant taxa and comprised 37?94% of zooplankton abundance. For calanoid copepods, 30 species belonging to 20 genera were identified. Based on the copepod abundance, their communities were classified into three groups using a cluster analysis. The horizontal distribution of each group was well synchronized with depth zones, defined here as Shelf, Slope and Basin. Neritic Pacific copepods were the dominant species in the Shelf zone. Arctic copepods were substantially greater in the Slope zone than the other regions. Mesopelagic copepods were greater in the Basin zone than the other regions. Stage compositions of large-sized Arctic copepods (Calanus glacialis and Metridia longa) were characterized by the dominance of late copepodid stages in the Basin. Both the abundance and stage compositions of large copepods corresponded well with Chl. a concentrations in each region, with high Chl. a in the Shelf and Slope supporting reproduction of copepods resulting in high abundance dominated by early copepodid stages.  相似文献   
102.
Rocket results are presented on the OI 6300 Å line and on the N2+ 3914 Å band in the dayglow. An altitude range of 78–335 km is covered. Theoretical interpretations are given, using results of simultaneous measurements of electron density and electron temperature. The apparent brightness of the 6300 Å line at the base of the emitting region is found to be 13 kR, of which 5.5 kR are ascribed to excitation through the Schumann-Runge dissociation of O2 by the solar UV radiations, 0.55 kR to the dissociative recombination of O2+ and NO+ ions, and 0.03 kR to the excitation of O by thermal electrons. An additional source of excitation above 280 km is suggested. The deactivation of O(1D) by O2(X3Σg) is found to be appreciable below 200 km, and its rate coefficient is estimated to be 2 × 10−10 cm3/sec. The apparent brightness of the 3914 Å band at the base of the emitting region is found to be 6.5 kR, decreasing to 3.2 kR at 330 km. Assuming that fluorescent scattering of solar radiation is the mechanism involved the distribution of N2+ ions is calculated. The rate coefficients for the loss of these ions are hence calculated.  相似文献   
103.
Kohei  Sato Katsuo  Kase 《Island Arc》1996,5(3):216-228
Abstract The metallogeny of Japan can be grouped into four environments: (1) Paleozoic-Mesozoic stratiform Cu and Mn deposits within accretionary complexes, (2) Cretaceous-Paleogene post-accretionary deposits related to felsic magmatism in a continental-margin are environment, (3) Miocene epigenetic and syngenetic deposits related to felsic magmatism during back-arc opening, and (4) late Miocene-Quaternary volcanogenic deposits in an island-are environment. Group (1) deposits were a major source of Cu and Mn for the Japanese mining industry, and this style of mineralization is reviewed here. The stratiform Cu and Mn deposits were formed on the sea floor during the late Paleozoic to Mesozoic, and were subsequently accreted to active continental margins mainly in Jurassic to Cretaceous age. The Cu sulfide deposits, termed Besshi type, are classified into two subtypes: the Besshi-subtype deposit is related to basaltic volcanism, probably at a mid-oceanic ridge or rise; the Hitachi subtype is related to bimodal volcanism, probably in a back-arc or continental rift. Most of the Besshisubtype deposits occur in the Sanbagawa metamorphic belt, with some occurrences in weakly metamorphosed Jurassic and Cretaceous accretionary terrains. This subtype is divided into two groups: the sediment-barren group is hosted by basalt-chert sequences; whereas the sedimentcovered group is hosted by basalt-shale sequences. Both subtypes are characterized by S isotope trends similar to those of sea-floor sulfide deposits now forming at mid-oceanic ridges. The Hitachi-subtype deposits occur in late Paleozoic volcanic-sedimentary sequences and lack pelagic sediments. These deposits are characterized by association of sphalerite- and barite-rich ores. The Mn deposits occur mainly in Middle Jurassic to Early Cretaceous accretionary complexes containing abundant chert beds of Triassic to Jurassic age. Their locations are well separated from those of the Cu sulfide deposits. The Mn deposits are divided into two types: the Mn type, hosted by chert, and the Fe-Mn type, sandwiched between chert and basaltic volcanic rocks. The Mn-type ores appear to have deposited on the deep-sea floor further from the site of hydrothermal activity than the Fe-Mn type. Primary Mn precipitates may have been transformed to rhodochrosite and other Mn-minerals during diagenesis. Many of the Mn deposits were significantly metamorphosed during intrusion of Cretaceous granitoids, resulting in a very complex mineralogy.  相似文献   
104.
105.
Based on the geological tectonics, aftershock activity, earthquake surface rupture and peak ground motion, the geometric and dynamic characteristics of seismogenic tectonics about the 1995 Hanshin earthquake are analysed. Nojima fault and Rokko fault have the same trending direction, but opposite dips. Their rising and falling plates are in symmetrically diagonal distribution. The two faults can be defined as thrust-strike slip faults and constitute a pivotal strike-slip fault. The earthquake just occurred at the pivot, which is the seismotectonics for the earthquake to develop and occur. The pivotal movement along a strike-slip fault often leads to the occurrence of large earthquakes, whose dynamic process can be demonstrated by the stress analysis on the torsion of a beam with rectangle section. The displacement of earthquake surface rupture, aftershock density and peak acceleration change in a certain range of epicentral distance just similar as the shear stress changes from the center to the sides in the rectangle section. The distribution characteristics of the heaviest damage areas are also discussed in the article from the aspects of special geological tectonics and seismotectonic condition. The result obtained from the article can be applied not only to realizing the potencial earthquake sources in middle-long time, but also to build reasonably the prediction model about earthquake hazard.  相似文献   
106.
Consideration of the paleogeography and large and small structures in the outer part (the Sakawa Fold Belt) of the Paleozoic—Mesozoic geosyncline of Japan suggests that the main part of the Japanese Islands has grown up not from an arc—trench system but from a marginal sea basin—microcontinent system: the Chichibu Geosyncline and the Kurosegawa — Ofunato Island Arc, Minor structures are superposed in a complicated way and they are analyzed in terms of the concepts of tectonic level and multiple deformation.Stratigraphic evidence shows that an early deformation was pre-middle Triassic in the Chichibu Terrain but northwards in the Sambagawa terrain it may have continued until early Cretaceous in relation to minor scale subduction within the marginal basin. A late Cretaceous phase of deformation produced the greatest crustal shortening in the microcontinent area of the Kurosegawa Tectonic Zone and was nearly contemporaneous with the intrusion of granitic rocks in the Ryoke Zone Younger secondary eugeosynclines were developed by progressive encroachment on the arc—trench gap south of the Kurosegawa zone from late Permian times onwards.  相似文献   
107.
The turbulent structure of the lake breeze penetration and subsequent development of the thermal internal boundary layer (TIBL) was observed using a kytoon-mounted ultrasonic anemometer-thermometer. The lake breeze penetrated with an upward rolling motion associated with the upward flow near the lake breeze front. After the lake breeze front passed, the behaviors of the velocity and temperature at the top of the lake breeze layer were similar to those found in convective boundary layers (CBL). Comparing gq/*, u /w * and w /w * between the present observation of TIBL development after the passage of the lake breeze front and CBL data from the literature, the /* values showed reasonable agreement; however, u /w * and w /W* had smaller values in the TIBL than in the CBL at higher altitudes. This is due to the differences in the mean velocity profiles. While the CBL has a uniform velocity profile, the TIBL has a peak at lower elevation due to the lake breeze penetration; the velocity then decreases with height.Present address: The Institute of Behavioral Science, 1-35-7 Yoyogi, Tokyo 151, Japan.  相似文献   
108.
The mean structure within the internal boundary layer (IBL) near the shore, which develop from the coast in the presence of a sea breeze, has been described in Part I of this study (Ogawa and Ohara, 1984). This paper presents the results of the similarity and energy budget analysis for the purpose of parameterization of the turbulent structure within the IBL. The analysis of the turbulent kinetic energy balance, turbulent intensities and spectra show that the wind is strongly affected by mechanical turbulence in comparison with the past results in a fully developed convective layer where thermal convection dominated. The standard deviations of the wind velocities normalized by the friction velocity u * (surface-layer scaling parameter) are functions only of the normalized height z/Z i within 160 m of the shoreline, where Z i is the IBL. On the other hand, the standard deviations of temperature normalized by * (mixing-layer scaling parameter) have less scatter with distance than those normalized by T * (surface-layer scaling parameter). The data showed that both u * (not a mixed-layer parameter), and Z i (not a surface-layer parameter) are necessary to describe the turbulent characteristics of the IBL near the shore.Deceased March, 1984.  相似文献   
109.
A field experiment to measure the turbulent structure of the internal boundary layer near the shore was conducted using three instrumented meteorological poles, a kytoon, and a crane-mounted ultrasonic anemometer-thermometer, as well as three reference ultrasonic anemometer-thermometers positioned near the poles. Part 1 of this study gives the explicit details and general characteristics for one run of the experiment. Part 2 (Ohara and Ogawa, 1984) will present a similarity and energy budget analysis. The mean velocity profiles showed that there was wind speed acceleration due to the sea-land temperature difference. In addition, the velocity profiles consisted of three distinct regions; the region near the ground had the largest gradient followed by a transition zone which had a small velocity gradient, while above, the profile resembled the oncoming sea breeze. In general, the turbulence was greatest near the shore, gradually decreasing inland. The lowest region had large turbulence intensities and the transition region had some intermittent turbulence characteristics between the lower strong unstable layer and the relatively turbulent-free region above.Deceased March 1984.Present address: The Institute of Behavioral Sciences, Yoyagi, Tokyo 151, Japan.  相似文献   
110.
Excitation rates of the infrared emissions which are likely to occur in the mesosphere and thermosphere are quantitatively evaluated. They include the 9.6 μm band of O3, the 15 and 4.3 μm bands of CO2 and the 5.3 and 2.8 μm bands of NO. These emissions may be excited through nonthermal processes such as chemiluminescent reactions and resonant fluorescence in the thermosphere, whereas they are of thermal origin in the stratosphere and mesosphere. Increase of the non-thermal excitation rate caused by precipitating electrons could be responsible for the enhancement of the 4.3 μm band of CO2, and the 5.3 and 2.8 μm bands of NO observed in the auroral thermosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号