首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   931篇
  免费   33篇
  国内免费   21篇
测绘学   9篇
大气科学   124篇
地球物理   195篇
地质学   368篇
海洋学   36篇
天文学   222篇
综合类   4篇
自然地理   27篇
  2021年   13篇
  2020年   13篇
  2019年   12篇
  2018年   13篇
  2017年   13篇
  2016年   24篇
  2015年   27篇
  2014年   28篇
  2013年   45篇
  2012年   42篇
  2011年   44篇
  2010年   35篇
  2009年   40篇
  2008年   49篇
  2007年   33篇
  2006年   33篇
  2005年   44篇
  2004年   37篇
  2003年   25篇
  2002年   29篇
  2001年   20篇
  2000年   23篇
  1999年   20篇
  1998年   15篇
  1997年   9篇
  1996年   14篇
  1995年   11篇
  1994年   15篇
  1993年   10篇
  1992年   8篇
  1991年   17篇
  1990年   9篇
  1989年   6篇
  1988年   11篇
  1987年   8篇
  1986年   7篇
  1985年   8篇
  1984年   13篇
  1983年   14篇
  1981年   16篇
  1980年   14篇
  1979年   7篇
  1978年   13篇
  1977年   9篇
  1976年   14篇
  1975年   10篇
  1974年   7篇
  1973年   12篇
  1972年   8篇
  1970年   5篇
排序方式: 共有985条查询结果,搜索用时 281 毫秒
841.
The Tibetan Plateau is a topographic feature of extraordinary dimension and has an important impact on regional and global climate. However, the glacial history of the Tibetan Plateau is more poorly constrained than that of most other formerly glaciated regions such as in North America and Eurasia. On the basis of some field evidence it has been hypothesized that the Tibetan Plateau was covered by an ice sheet during the Last Glacial Maximum (LGM). Abundant field- and chronological evidence for a predominance of local valley glaciation during the past 300,000 calendar years (that is, 300 ka), coupled to an absence of glacial landforms and sediments in extensive areas of the plateau, now refute this concept. This, furthermore, calls into question previous ice sheet modeling attempts which generally arrive at ice volumes considerably larger than allowed for by field evidence. Surprisingly, the robustness of such numerical ice sheet model results has not been widely queried, despite potentially important climate ramifications. We simulated the growth and decay of ice on the Tibetan Plateau during the last 125 ka in response to a large ensemble of climate forcings (90 members) derived from Global Circulation Models (GCMs), using a similar 3D thermomechanical ice sheet model as employed in previous studies. The numerical results include as extreme end members as an ice-free Tibetan Plateau and a plateau-scale ice sheet comparable, in volume, to the contemporary Greenland ice sheet. We further demonstrate that numerical simulations that acceptably conform to published reconstructions of Quaternary ice extent on the Tibetan Plateau cannot be achieved with the employed stand-alone ice sheet model when merely forced by paleoclimates derived from currently available GCMs. Progress is, however, expected if future investigations employ ice sheet models with higher resolution, bidirectional ice sheet-atmosphere feedbacks, improved treatment of the surface mass balance, and regional climate data and climate reconstructions.  相似文献   
842.
Movement within the Earth’s upper crust is commonly accommodated by faults or shear zones, ranging in scale from micro-displacements to regional tectonic lineaments. Since faults are active on different time scales and can be repeatedly reactivated, their displacement chronology is difficult to reconstruct. This study represents a multi-geochronological approach to unravel the evolution of an intracontinental fault zone locality along the Danube Fault, central Europe. At the investigated fault locality, ancient motion has produced a cataclastic deformation zone in which the cataclastic material was subjected to hydrothermal alteration and K-feldspar was almost completely replaced by illite and other phyllosilicates. Five different geochronological techniques (zircon Pb-evaporation, K–Ar and Rb–Sr illite, apatite fission track and fluorite (U-Th)/He) have been applied to explore the temporal fault activity. The upper time limit for initiation of faulting is constrained by the crystallization age of the primary rock type (known as “Kristallgranit”) at 325 ± 7 Ma, whereas the K–Ar and Rb–Sr ages of two illite fractions <2 μm (266–255 Ma) are interpreted to date fluid infiltration events during the final stage of the cataclastic deformation period. During this time, the “Kristallgranit” was already at or near the Earth’s surface as indicated by the sedimentary record and thermal modelling results of apatite fission track data. (U–Th)/He thermochronology of two single fluorite grains from a fluorite–quartz vein within the fault zone yield Cretaceous ages that clearly postdate their Late-Variscan mineralization age. We propose that later reactivation of the fault caused loss of helium in the fluorites. This assertion is supported by geological evidence, i.e. offsets of Jurassic and Cretaceous sediments along the fault and apatite fission track thermal modelling results are consistent with the prevalence of elevated temperatures (50–80°C) in the fault zone during the Cretaceous.  相似文献   
843.
This review gives an overview of the literature on reference materials of geochemical and environmental interest for the two-year period 2008–2009. Reference materials play an increasingly important role in all fields of geoanalytical research. This is demonstrated by the large number of publications containing data on reference materials. Although many reference materials exist, there is still a great need for certified samples, so-called delta zero materials for stable isotopic work and homogeneous microanalytical reference materials. This review focuses on six topics: developments of certification processes of reference materials mainly postulated in ISO guidelines and the IAG protocol, new developments of the GeoReM database, investigations of powdered rock reference materials, Chinese reference materials published in Chinese journals, microanalytical reference materials and isotopic reference materials.  相似文献   
844.
The Afar Depression offers a rare opportunity to study the geodynamic evolution of a rift system from continental rifting to sea floor spreading. This study presents geochemical data for crustal and mantle xenoliths and their alkaline host basalts from the region. The basalts have enriched REE patterns, OIB-like trace element characteristics, and a limited range in isotopic composition (87Sr/86Sr = 0.70336–0.70356, ε Nd = +6.6 to +7.0, and ε Hf = +10.0 to +10.7). In terms of trace elements and Sr–Nd isotopes, they are similar to basalts from the Hanish and Zubair islands in the southern Red Sea and are thus interpreted to be melts from the Afar mantle. The gabbroic crustal xenoliths vary widely in isotope composition (87Sr/86Sr = 0.70437–0.70791, ε Nd = −8.1 to +2.5, and ε Hf = −10.5 to +4.9), and their trace element characteristics match those of Neoproterozoic rocks from the Arabian–Nubian Shield and modern arc rocks, suggesting that the lower crust beneath the Afar Depression contains Neoproterozoic mafic igneous rocks. Ultramafic mantle xenoliths from Assab contain primary assemblages of fresh ol + opx + cpx + sp ± pl, with no alteration or hydrous minerals. They equilibrated at 870–1,040°C and follow a steep geothermal gradient consistent with the tectonic environment of the Afar Depression. The systematic variations in major and trace elements among the Assab mantle xenoliths together with their isotopic compositions suggest that these rocks are not mantle residues but rather series of layered cumulate sills that crystallized from a relatively enriched picritic melt related to the Afar plume that was emplaced before the eruption of the host basalts.  相似文献   
845.
The far-reaching gravitational force—in the approximation of Newton’s law of gravitation—is described by a heuristic model with hypothetical massless particles propagating at the speed of light in vacuum and transferring momentum and energy between physical entities through interactions on a local basis. The model has some similarities with the impact theory presented by Nicolas Fatio de Duillier to the Royal Society in 1690. Objections raised against this idea are dispelled by invoking the Special Theory of Relativity, considering non-local interactions, and replacing the shielding concept by a secular mass increase of massive bodies. Some consequences and applications of the model are discussed.  相似文献   
846.
Abstract– Within the frame of the MEMIN research unit (Multidisciplinary Experimental and Numerical Impact Research Network), impact experiments on sandstone targets were carried out to systematically study the influence of projectile mass, velocity, and target water saturation on the cratering and ejection processes. The projectiles were accelerated with two‐stage light‐gas guns (Ernst‐Mach‐Institute) onto fine‐grained targets (Seeberger sandstone) with about 23% porosity. Collection of the ejecta on custom‐designed catchers allowed determination of particle shape, size distribution, ejection angle, and microstructures. Mapping of the ejecta imprints on the catcher surface enabled linking of the different patterns to ejection stages observed on high‐speed videos. The increase in projectile mass from 0.067 to 7.1 g correlates with an increase in the total ejected mass; ejecta angles, however, are similar in range for all experiments. The increase in projectile velocity from 2.5 to 5.1 km s?1 correlates with a total ejecta mass increase as well as in an increase in comminution efficiency, and a widening of the ejecta cone. A higher degree of water saturation of the target yields an increase in total ejecta mass up to 400% with respect to dry targets, higher ejecta velocity, and a steeper cone. These data, in turn, suggest that the reduced impedance contrast between the quartz grains of the target and the pores plays a primary role in the ejecta mass increase, while vaporization of water determines the ejecta behavior concerning ejecta velocity and particle distribution.  相似文献   
847.
Regional warming and modifications in precipitation regimes has large impacts on streamflow in Norway, where both rainfall and snowmelt are important runoff generating processes. Hydrological impacts of recent changes in climate are usually investigated by trend analyses applied on annual, seasonal, or monthly time series. None of these detect sub-seasonal changes and their underlying causes. This study investigated sub-seasonal changes in streamflow, rainfall, and snowmelt in 61 and 51 catchments respectively in Western (Vestlandet) and Eastern (Østlandet) Norway by applying the Mann–Kendall test and Theil–Sen estimator on 10-day moving averaged daily time series over a 30-year period (1983–2012). The relative contribution of rainfall versus snowmelt to daily streamflow and the changes therein have also been estimated to identify the changing relevance of these driving processes over the same period. Detected changes in 10-day moving averaged daily streamflow were finally attributed to changes in the most important hydro-meteorological drivers using multiple-regression models with increasing complexity. Earlier spring flow timing in both regions occur due to earlier snowmelt. Østlandet shows increased summer streamflow in catchments up to 1100 m a.s.l. and slightly increased winter streamflow in about 50% of the catchments. Trend patterns in Vestlandet are less coherent. The importance of rainfall has increased in both regions. Attribution of trends reveals that changes in rainfall and snowmelt can explain some streamflow changes where they are dominant processes (e.g., spring snowmelt in Østlandet and autumn rainfall in Vestlandet). Overall, the detected streamflow changes can be best explained by adding temperature trends as an additional predictor, indicating the relevance of additional driving processes such as increased glacier melt and evapotranspiration.  相似文献   
848.
The Weierbach experimental catchment (0.45 km2) is the most instrumented and studied sub-catchment in the Alzette River basin in Luxembourg. Within the last decade, it has matured towards an interdisciplinary critical zone observatory focusing on a better understanding of hydrological and hydro-geochemical processes. The Weierbach catchment is embedded in an elevated sub-horizontal plateau, characterized by slate bedrock and representative of the Ardennes Massif. Its climate is semi-marine, with precipitation being rather evenly distributed throughout the year. Base flow is lowest from July to September, essentially due to higher losses through evapotranspiration in summer. The regolith is composed of Devonian slates, overlaid by Pleistocene slope deposits and entirely covered by forest with 70% deciduous and 30% coniferous trees. Since 2009, the Weierbach has been extensively equipped for continuously monitoring water fluxes and physico-chemical parameters within different compartments of the critical zone. Additionally, these compartments are sampled fortnightly at several locations to analyze δ18O and δ2H isotopic composition of water including rainfall, throughfall, soil water, groundwater and streamwater. This ongoing monitoring and sampling programme is used for answering pressing questions related to fundamental catchment functions of water infiltration, storage, mixing and release in forest ecosystems. A recently started research line aims at investigating interactions between forest eco-hydrosystems with the atmosphere and understanding how catchments will respond to a non-stationary climate.  相似文献   
849.
We use an integrated assessment model of climate change to analyze how alternative decision-making criteria affect preferred investments into greenhouse gas mitigation, the distribution of outcomes, the robustness of the strategies, and the economic value of information. We define robustness as trading a small decrease in a strategy’s expected performance for a significant increase in a strategy’s performance in the worst cases. Specifically, we modify the Dynamic Integrated model of Climate and the Economy (DICE-07) to include a simple representation of a climate threshold response, parametric uncertainty, structural uncertainty, learning, and different decision-making criteria. Economic analyses of climate change strategies typically adopt the expected utility maximization (EUM) framework. We compare EUM with two decision criteria adopted from the finance literature, namely Limited Degree of Confidence (LDC) and Safety First (SF). Both criteria increase the relative weight of the performance under the worst-case scenarios compared to EUM. We show that the LDC and SF criteria provide a computationally feasible foundation for identifying greenhouse gas mitigation strategies that may prove more robust than those identified by the EUM criterion. More robust strategies show higher near-term investments in emissions abatement. Reducing uncertainty has a higher economic value of information for the LDC and SF decision criteria than for EUM.  相似文献   
850.
Continuous access to the UV domain has been considered of importance to astrophysicists and planetary scientists since the mid-sixties. However, the future of UV missions for the post-HST era is believed by a significant part of astronomical community to be less encouraging. We argue that key science problems of the coming years will require further development of UV observational technologies. Among these hot astrophysical issues are: the search for missing baryons, revealing the nature of astronomical engines, properties of atmospheres of exoplanets as well as of the planets of the Solar System etc. We give a brief review of UV-missions both in the past and in the future. We conclude that UV astronomy has a great future but the epoch of very large and efficient space UV facilities seems to be a prospect for the next decades. As to the current state of the UV instrumentation we think that this decade will be dominated by the HST and coming World Space Observatory-Ultraviolet (WSO-UV) with a 1.7 m UV-telescope onboard. The international WSO-UV mission is briefly described. It will allow high resolution/high sensitivity imaging and high/low resolution spectroscopy from the middle of the decade.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号