首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   931篇
  免费   33篇
  国内免费   21篇
测绘学   9篇
大气科学   124篇
地球物理   195篇
地质学   368篇
海洋学   36篇
天文学   222篇
综合类   4篇
自然地理   27篇
  2021年   13篇
  2020年   13篇
  2019年   12篇
  2018年   13篇
  2017年   13篇
  2016年   24篇
  2015年   27篇
  2014年   28篇
  2013年   45篇
  2012年   42篇
  2011年   44篇
  2010年   35篇
  2009年   40篇
  2008年   49篇
  2007年   33篇
  2006年   33篇
  2005年   44篇
  2004年   37篇
  2003年   25篇
  2002年   29篇
  2001年   20篇
  2000年   23篇
  1999年   20篇
  1998年   15篇
  1997年   9篇
  1996年   14篇
  1995年   11篇
  1994年   15篇
  1993年   10篇
  1992年   8篇
  1991年   17篇
  1990年   9篇
  1989年   6篇
  1988年   11篇
  1987年   8篇
  1986年   7篇
  1985年   8篇
  1984年   13篇
  1983年   14篇
  1981年   16篇
  1980年   14篇
  1979年   7篇
  1978年   13篇
  1977年   9篇
  1976年   14篇
  1975年   10篇
  1974年   7篇
  1973年   12篇
  1972年   8篇
  1970年   5篇
排序方式: 共有985条查询结果,搜索用时 250 毫秒
811.
812.
The Eastern Sierras Pampeanas were structured by three main events: the Ediacaran to early Cambrian (580?C510?Ma) Pampean, the late Cambrian?COrdovician (500?C440?Ma) Famatinian and the Devonian-Carboniferous (400?C350?Ma) Achalian orogenies. Geochronological and Sm?CNd isotopic evidence combined with petrological and structural features allow to speculate for a major rift event (Ediacaran) dividing into two Mesoproterozoic major crustal blocks (source of the Grenvillian age peaks in the metaclastic rocks).This event would be coeval with the development of arc magmatism along the eastern margin of the eastern block. Closure of this eastern margin led to a Cambrian active margin (Sierra Norte arc) along the western margin of the eastern block in which magmatism reworked the same crustal block. Consumption of a ridge segment (input of OIB signature mafic magmas) which controlled granulite-facies metamorphism led to a final collision (Pampean orogeny) with the western Mesoprotrozoic block. Sm?CNd results for the metamorphic basement suggest that the T DM age interval of 1.8?C1.7?Ga, which is associated with the less radiogenic values of ??Nd(540) (?6 to ?8), can be considered as the mean average crustal composition for the Eastern Sierras Pampeanas. Increasing metamorphic grade in rocks with similar detrital sources and metamorphic ages like in the Sierras de Córdoba is associated with a younger T DM age and a more positive ??Nd(540) value. Pampean pre-540?Ma granitoids form two clusters, one with T DM ages between 2.0 and 1.75?Ga and another between 1.6 and 1.5?Ga. Pampean post-540?Ma granitoids exhibit more homogenous T DM ages ranging from 2.0 to 1.75?Ga. Ordovician re-activation of active margin along the western part of the block that collided in the Cambrian led to arc magmatism (Famatinian orogeny) and related ensialic back-arc basin in which high-grade metamorphism is related to mid-crustal felsic plutonism and mafic magmatism with significant contamination of continental crust. T DM values for the Ordovician Famatinian granitoids define a main interval of 1.8?C1.6, except for the Ordovician TTG suites of the Sierras de Córdoba, which show younger T DM ages ranging from 1.3 to 1.0?Ga. In Devonian times (Achalian orogeny), a new subduction regime installed west of the Eastern Sierras Pampeanas. Devonian magmatism in the Sierras exhibit process of mixing/assimilation of depleted mantle signature melts and continental crust. Achalian magmatism exhibits more radiogenic ??Nd(540) values that range between 0.5 and ?4 and T DM ages younger than 1.3?Ga. In pre-Devonian times, crustal reworking is dominant, whereas processes during Devonian times involved different geochemical and isotopic signatures that reflect a major input of juvenile magmatism.  相似文献   
813.
Whole-rock geochemical analyses using major and trace elements in combination with the Sm–Nd and Pb–Pb isotope systems, together with SHRIMP age dating on metasedimentary rocks from the Sierras de Chepes, the Sierras de Córdoba, the Sierra Norte and the San Luis Formation in the Sierra de San Luis, have been carried out to unravel the provenance and the geodynamic history of the Eastern Sierras Pampeanas, Central Argentina. The geochemical and the Sm–Nd data point to a slightly stronger mafic and less-fractionated material in the provenance area of the Sierras de Córdoba when compared to the other units. The TDM model ages from the Sierras de Chepes (~1.82 Ga) and the Sierra Norte (~1.79 Ga) are significantly older than the data from the Sierras de Córdoba (1.67 Ga). The Pb data are homogeneous for the different units. Only the 208Pb/204Pb ratios of some samples from the Sierras de Córdoba are higher. A late Pampean detrital zircon peak around 520 Ma from the Sierras de Chepes is in accordance with the new data from the San Luis Formation. This is similar to the literature data from the Famatina Belt located to the northwest of the Sierras de Chepes and also fits the detrital zircon peaks in the Mesón group. These maximum depositional ages were also reported from some locations in the Puncoviscana Formation but are absent in the Sierras de Córdoba. An improved model for the development of the Eastern Sierras Pampeanas in the area between the Sierras de Córdoba and the Puncoviscana Formation is provided. This gives new insights into the late Pampean development of the Sierra de San Luis and the complex development of the Eastern Sierras Pampeanas. This new model explains the younger detrital ages in the Puncoviscana Formation compared with the older ages of the Sierras de Córdoba. Another model of the Sierra de San Luis explains the younger depositional ages of the Pringles Metamorphic Complex and the San Luis Formation when compared to the Nogolí Metamorphic Complex and the Conlara Metamorphic Complex. Additionally, the rather fast change of the high-grade metamorphic conditions in the Pringles Metamorphic Complex and the low-grade metamorphic conditions in the San Luis Formation is explained by extension, the ascent of (ultra) mafic material and later folding and erosion.  相似文献   
814.
A review of the lithostratigraphic units in the Río de la Plata Craton and of new and previously published geochronological, isotopic and geophysical data is presented. Sm?CNd TDM model ages between 2.6 and 2.2?Ga characterize the Piedra Alta Terrane of this craton. Crystallization ages between 2.2 and 2.1?Ga for the metamorphic protoliths and 2.1?C2.0?Ga for the post-orogenic granitoids indicate juvenile crust, followed by a short period of crustal recycling. Cratonization of this terrane occurred during the late Paleoproterozoic. Younger overprinting is not observed, suggesting it had a thick and strong lithosphere in the Neoproterozoic. A similar scenario is indicated for the Tandilia Belt of Argentina. Sm?CNd TDM model ages for the Nico Pérez Terrane show two main events of crustal growth (3.0?C2.6?and 2.3?C1.6?Ga). The crystallization ages on zircon ranges between 3.1 and 0.57?Ga, which is evidence for long-lived crustal reworking. The age for cratonization is still uncertain. In the Taquarembó Block, which is considered the prolongation of the Nico Pérez Terrane in southern Brazil, a similar scenario can be observed. These differences together with contrasting geophysical signatures support the redefinition of the Río de la Plata Craton comprising only the Piedra Alta Terrane and the Tandilia Belt. The Sarandí del Yí Shear Zone is regarded as the eastern margin of this Craton.  相似文献   
815.
Four silicate glasses were prepared by the fusion of about 1 kg powder each of a basalt, syenite, soil and andesite to provide reference materials of natural composition for microanalytical work. These glasses are referred to as ‘Chinese Geological Standard Glasses’ (CGSG) ‐1, ‐2, ‐4 and ‐5. Micro and bulk analyses indicated that the glasses are well homogenised with respect to major and trace elements. Some siderophile/chalcophile elements (e.g., Sn, Pt, Pb) may be heterogeneously distributed in CGSG‐5. This paper provides the first analytical data for the CGSG reference glasses using a variety of analytical techniques (wet chemistry, XRF, EPMA, ICP‐AES, ICP‐MS, LA‐ICP‐MS) performed in nine laboratories. Most data agree within uncertainty limits of the analytical techniques used. Discrepancies in the data for some siderophile/chalcophile elements exist, mainly because of possible heterogeneities of these elements in the glasses and/or analytical problems. From the analytical data, preliminary reference and information values for fifty‐five elements were calculated. The analytical uncertainties [2 relative standard error (RSE)] were estimated to be between about 1% and 20%.  相似文献   
816.
High-resolution multi-channel seismic data from continental slopes with minor sediment input off southwest Mallorca Island, the Bay of Oran (Algeria) and the Alboran Ridge reveal evidence that the Messinian erosional surface is terraced at an almost constant depth interval between 320 and 380 m below present-day sea level. It is proposed that these several hundred- to 2,000-m-wide terraces were eroded contemporaneously and essentially at the same depth. Present-day differences in these depths result from subsidence or uplift in the individual realms. The terraces are thought to have evolved during one or multiple periods of sea-level stagnancy in the Western Mediterranean Basin. According to several published scenarios, a single or multiple periods of relative sea-level stillstand occurred during the Messinian desiccation event, generally known as the Messinian Salinity Crisis. Some authors suggest that the stagnancy started during the refilling phase of the Mediterranean basins. When the rising sea level reached the height of the Sicily Sill, the water spilled over this swell into the eastern basin. The stagnancy persisted until sea level in the eastern basin caught up with the western Mediterranean water level. Other authors assigned periods of sea-level stagnancy to drawdown phases, when inflowing waters from the Atlantic kept the western sea level constant at the depth of the Sicily Sill. Our findings corroborate all those Messinian sea-level reconstructions, forwarding that a single or multiple sea-level stagnancies at the depth of the Sicily Sill lasted long enough to significantly erode the upper slope. Our data also have implications for the ongoing debate of the palaeo-depth of the Sicily Sill. Since the Mallorcan plateau experienced the least vertical movement, the observed terrace depth of 380 m there is inferred to be close to the Messinian depth of this swell.  相似文献   
817.
818.
Different batches of the new US Geological Survey (USGS) reference materials (RMs) BCR-2, BHVO-2, AGV-2, DTS-2 and GSP-2 and the original USGS RMs BCR-1, BHVO-1, AGV-1, DTS-1 and GSP-1 have been analysed by isotope dilution using thermal ionisation mass spectrometry (ID-TIMS) and by multi-ion counting spark source mass spectrometry (MIC-SSMS). The concentrations of K, Rb, Sr, Ba and the rare earth elements were determined with overall analytical uncertainties of better than 1% (ID-TIMS) and 3% (MIC-SSMS). The analyses of different aliquots and batches of BCR-2, BHVO-2, AGV-2 and GSP-2, respectively, agree within 1%, i.e. approximately the analytical uncertainties of the data. This indicates an homogeneous distribution of the trace elements in these RMs. Differences in element concentrations of up to 17% in different aliquots of the depleted RM DTS-2 are outside the analytical uncertainty of our data. They may be attributed to a slightly heterogeneous distribution of trace elements in this dunite sample. Our trace element data for BCR-2, BHVO-2, AGV-2 and GSP-2 agree within about 3% with preliminary reference values published by the USGS. They also agree within 1-6% with those of the original RMs BCR-1, BHVO-1, AGV-1 and GSP-1. Large compositional differences are found between DTS-2 and DTS-1, where the concentrations of K, Rb, Sr and the light REE differ by factors of 2 to 24.  相似文献   
819.
We present an interdisciplinary study on data and modeling intercomparison, concerning the possible existence of a Tibetan ice sheet and its climatological implications during the ice age. In the ice sheet model the fields of ice flow and temperature are calculated, and a highly parameterized formulation of the yearly snow balance is used, defining the forcing at the surface of the ice sheet. The data set used, supplies the height of the equilibrium line of the glaciers (=ELA) and documents the maximum extension of the glaciated areas. With prescribed snow accumulation above the ELA and melting below, the model is integrated for 10 000 model years and the model glaciation is then compared with the data.The main results are: Provided the height of the glacial equilibrium line has been reconstructed correctly, a Tibetan ice sheet can be bult up within 10 000 model years, using moderate rates of precipitation (maximum snow fall: 100 mm/year). Comparison of data and model glaciation suggests an increase of precipitation from the NW to the E of Tibet and from the S to the NE, which reflects the presently observed pattern of the monsoon circulation.  相似文献   
820.
Spatial variability of physical and chemical properties in Amazonian soils is evaluated on sites of natural rain forest and pastures of different age in the Amazon region. The sampling scheme was regionalized using transects of fifty points 3 m apart each. Variables analysed were: soil bulk density; resistance to penetration; soil water content; available water; pH and extractable ions such as Ca, K, Al, P and Zn. Geostatistical analyses show that most variables are space independent for the 3 m spacing used. Variances indicate a much lower variability of the measured properties in the forest as compared to pastures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号