全文获取类型
收费全文 | 1296篇 |
免费 | 40篇 |
国内免费 | 5篇 |
专业分类
测绘学 | 47篇 |
大气科学 | 123篇 |
地球物理 | 341篇 |
地质学 | 325篇 |
海洋学 | 115篇 |
天文学 | 248篇 |
自然地理 | 142篇 |
出版年
2021年 | 9篇 |
2020年 | 15篇 |
2019年 | 19篇 |
2018年 | 17篇 |
2017年 | 16篇 |
2016年 | 31篇 |
2015年 | 28篇 |
2014年 | 31篇 |
2013年 | 57篇 |
2012年 | 26篇 |
2011年 | 49篇 |
2010年 | 49篇 |
2009年 | 72篇 |
2008年 | 50篇 |
2007年 | 61篇 |
2006年 | 71篇 |
2005年 | 59篇 |
2004年 | 62篇 |
2003年 | 53篇 |
2002年 | 41篇 |
2001年 | 45篇 |
2000年 | 32篇 |
1999年 | 27篇 |
1998年 | 31篇 |
1997年 | 21篇 |
1996年 | 17篇 |
1995年 | 19篇 |
1994年 | 23篇 |
1993年 | 17篇 |
1992年 | 24篇 |
1991年 | 12篇 |
1990年 | 20篇 |
1989年 | 13篇 |
1988年 | 12篇 |
1987年 | 16篇 |
1986年 | 14篇 |
1985年 | 19篇 |
1984年 | 14篇 |
1983年 | 22篇 |
1982年 | 16篇 |
1981年 | 23篇 |
1980年 | 14篇 |
1979年 | 8篇 |
1978年 | 9篇 |
1977年 | 13篇 |
1976年 | 5篇 |
1975年 | 10篇 |
1974年 | 6篇 |
1973年 | 8篇 |
1972年 | 5篇 |
排序方式: 共有1341条查询结果,搜索用时 15 毫秒
31.
The Port Mouton Shear Zone: intersection of a regional fault with a crystallizing granitoid pluton 总被引:2,自引:0,他引:2
D. Barrie Clarke Krista L. McCuish Ron H. Vernon Victor Maksaev Brent V. Miller 《Lithos》2002,61(3-4):141-159
The peraluminous tonalite–monzogranite Port Mouton Pluton is a petrological, geochemical, structural, and geochronological anomaly among the many Late Devonian granitoid intrusions of the Meguma Lithotectonic Zone of southern Nova Scotia. The most remarkable structural feature of this pluton is a 4-km-wide zone of strongly foliated (040/subvertical) monzogranites culminating in a narrow (10–30 m), straight, zone of compositionally banded rocks that extends for at least 3 km along strike. The banded monzogranites consist of alternating melanocratic and leucocratic compositions that are complementary to the overall composition of that part of the pluton, suggesting an origin by mineral–melt and mineral–mineral sorting. Biotite and feldspar are strongly foliated in the plane of the compositional bands. These compositional variations and foliations originated by a process of segregation flow during shearing of the main magma with a crystallinity of 55–75%. Subsequent minor brittle fracturing of feldspars, twinning of microcline, development of blocky sub-grains in quartz, and kinking of micas demonstrate overprinting by a high-temperature deformation straddling the monzogranite solidus. Small folds and late sigmoidal dykes indicate dextral movement on the shear zone. This Port Mouton Shear Zone (PMSZ) is approximately co-linear with the only outcrops of Late Devonian mafic intrusions in the area, two of which are syn-plutonic with well-developed mingling textures in the marginal tonalite of the Port Mouton Pluton. Also closely co-linear with the mafic intrusions are a granitoid dyke that extends well beyond the outer contact of the Port Mouton Pluton, a swarm of large aligned angular xenolithic slabs, a zone of thin wispy schlieren banding, a large Be-bearing pegmatite, and a breccia pipe with abundant garnetiferous metapelitic xenoliths. In various ways, the shear zone may control all of these features. The Port Mouton Shear Zone is parallel to many other NE-trending faults and shear zones in the northern Appalachians, probably related to the docking of the Meguma Zone along the Cobequid–Chedabucto Fault system. 相似文献
32.
Keith A. W. Crook 《Australian Journal of Earth Sciences》2013,60(1-2):215-232
A new general model describing the extended evolution of fore‐arc terrains is used to analyse the evolution of the southern Tasman Geosyncline and the concomitant growth and kratonisation of the continental crust of southeast Australia during the Palaeozoic. The southern Tasman Geosyncline comprises ten arc terrains (here defined), most of which are east‐facing, and several features formed by crustal extension. Each arc terrain consists of several strato‐tectonic units: a volcanic arc, subduction complex and fore‐arc sequence formed during subduction; and an overlying post‐arc sequence which post‐dates subduction and is composed of flysch, neritic sediments or subaerial volcanics. When these materials attained a thickness of c. 20 km their internal heat‐balance caused partial melting of the subduction complex and the hydrated oceanic lithosphere trapped beneath it, to yield S‐ and I‐type granitic magma. The magma rose, inducing pervasive deformation of each arc terrain and emplacement of granitoid plutons at high levels in the evolving crust. Transitional basins then developed in many terrains on top of their volcanic arcs or the thinner parts of the buried accretionary prisms. After deformation of the transitional sequences, platform cover accumulated, marking the completion of kratonisation. Analysis of each arc terrain in terms of the above units leads to a predicted ‘stratigraphy’ for the continental crust of southeast Australia. The crust is complexly layered, with lateral discontinuities reflecting the boundaries of arc terrains which were successively accreted, principally back‐arc to fore‐arc, during crustal development. 相似文献
33.
Two types of noise afflict strain and tilt measurement. They may be categorized as “active” noise, which is due to atmospheric pressure variations, temperature variations, water-table variations and so forth; and “passive” or signal-generated noise which is a consequence of the interaction of the strain field of interest with inhomogeneities of material properties local to the measurement site.The reason why both types of noise are normally reduced by the use of long base line instruments is explained and a simple, practical long base line tiltmeter is described. 相似文献
34.
35.
A Study of DMS Oxidation in the Tropics: Comparison of Christmas Island Field Observations of DMS, SO2, and DMSO with Model Simulations 总被引:2,自引:0,他引:2
G. Chen D. D. Davis P. Kasibhatla A. R. Bandy D. C. Thornton B. J. Huebert A. D. Clarke B. W. Blomquist 《Journal of Atmospheric Chemistry》2000,37(2):137-160
This study reports comparisonsbetween model simulations, based on current sulfurmechanisms, with the DMS, SO2 and DMSOobservational data reported by Bandy et al.(1996) in their 1994 Christmas Island field study. For both DMS and SO2, the model results werefound to be in excellent agreement with theobservations when the observations were filtered so asto establish a common meteorological environment. Thisfiltered DMS and SO2 data encompassedapproximately half of the total sampled days. Basedon these composite profiles, it was shown thatoxidation of DMS via OH was the dominant pathway withno more than 5 to 15% proceeding through Cl atoms andless than 3% through NO3. This analysis wasbased on an estimated DMS sea-to-air flux of 3.4 ×109 molecs cm-2 s-1. The dominant sourceof BL SO2 was oxidation of DMS, the overallconversion efficiency being evaluated at 0.65 ± 0.15. The major loss of SO2 was deposition to theocean's surface and scavenging by aerosol. Theresulting combined first order k value was estimated at 1.6 × 10-5 s-1. In contrast to the DMSand SO2 simulations, the model under-predictedthe observed DMSO levels by nearly a factor of 50. Although DMSO instrument measurement problems can notbe totally ruled out, the possibility of DMSO sourcesother than gas phase oxidation of DMS must beseriously considered and should be explored in futurestudies. 相似文献
36.
Wylie A. Carr Christopher J. Preston Laurie Yung Bronislaw Szerszynski David W. Keith Ashley M. Mercer 《Climatic change》2013,121(3):567-577
There have been a number of calls for public engagement in geoengineering in recent years. However, there has been limited discussion of why the public should have a say or what the public can be expected to contribute to geoengineering discussions. We explore how public engagement can contribute to the research, development, and governance of one branch of geoengineering, solar radiation management (SRM), in three key ways: 1. by fulfilling ethical requirements for the inclusion of affected parties in democratic decision making processes; 2. by contributing to improved dialogue and trust between scientists and the public; and 3. by ensuring that decisions about SRM research and possible deployment are informed by a broad set of societal interests, values, and framings. Finally, we argue that, despite the nascent state of many SRM technologies, the time is right for the public to participate in engagement processes. 相似文献
37.
T.E.C. Keith J.M. Thompson R.A. Hutchinson L.D. White 《Journal of Volcanology and Geothermal Research》1992,49(3-4)
Meteoric waters from cold springs and streams outside of the 1912 eruptive deposits filling the Valley of Ten Thousand Smokes (VTTS) and in the upper parts of the two major rivers draining the 1912 deposits have similar chemical trends. Thermal springs issue in the mid-valley area along a 300-m lateral section of ash-flow tuff, and range in temperature from 21 to 29.8°C in early summer and from 15 to 17°C in mid-summer. Concentrations of major and minor chemical constituents in the thermal waters are nearly identical regardless of temperature. Waters in the downvalley parts of the rivers draining the 1912 deposits are mainly mixtures of cold meteoric waters and thermal waters of which the mid-valley thermal spring waters are representative. The weathering reactions of cold waters with the 1912 deposits appear to have stabilized and add only subordinate amounts of chemical constituents to the rivers relative to those contributed by the thermal waters. Isotopic data indicate that the mid-valley thermal spring waters are meteoric, but data is inconclusive regarding the heat source. The thermal waters could be either from a shallow part of a hydrothermal system beneath the 1912 vent region or from an incompletely cooled, welded tuff lens deep in the 1912 ash-flow sheet of the upper River Lethe area.Bicarbonate-sulfate waters resulting from interaction of near-surface waters and the cooling 1953–1968 southwest Trident plug issue from thermal springs south of Katmai Pass and near Mageik Creek, although the Mageik Creek spring waters are from a well-established, more deeply circulating hydrothermal system. Katmai caldera lake waters are a result of acid gases from vigorous drowned fumaroles dissolving in lake waters composed of snowmelt and precipitation. 相似文献
38.
Despite the long history of the continuum equation approach in hydrology, it is not a necessary approach to the formulation of a physically based representation of hillslope hydrology. The Multiple Interacting Pathways (MIPs) model is a discrete realization that allows hillslope response and transport to be simultaneously explored in a way that reflects the potential occurrence of preferential flows and lengths of pathways. The MIPs model uses random particle tracking methods to represent the flow of water within the subsurface alongside velocity distributions that acknowledge preferential flows and transition probability matrices, which control flow pathways. An initial realization of this model is presented here in application to a tracer experiment carried out in Gårdsjön, Sweden. The model is used as an exploratory tool, testing several hypotheses in relation to this experiment. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
39.
Joseph Bonaparte Gulf is a large embayment on the northwestern continental margin of Australia. It is approximately 300 km east‐west and 120 km north‐south with a broad continental shelf to seaward. Maximum width from the southernmost shore of Joseph Bonaparte Gulf to the edge of the continental shelf is 560 km. Several large rivers enter the gulf along its shores. The climate is monsoonal, sub‐humid, and cyclone‐prone during the December‐March wet season. A bedrock high (Sahul Rise) rims the shelf margin. The sediments within the gulf are carbonates to seaward, grading into clastics inshore. A seaward‐thinning wedge of highstand muds dominates the sediments of the inner shelf of Joseph Bonaparte Gulf. Mud banks up to 15m thick have developed inshore. Coarse‐grained sand ridges up to 15 m high are found off the mouth of the Ord River. These overlie an Upper Pleistocene transgressive lag of mixed carbonate and gravelly siliciclastic sand. Four drowned strandlines are present on the inner shelf at depths of 20, 25, 28 and 30 m below datum. These are interpreted as having formed during stillstands in the Late Pleistocene transgression. Older strandlines at great depths are inferred as having formed during the fall in sea‐level following the last highstand. For the most part the Upper Pleistocene‐Holocene marine sediments overlie an erosion surface cut into older Pleistocene sediments. Incised valleys cut into this erosion surface are up to 5 km wide and have a relief of at least 20 m. The largest valley is that cut by the Ord River. Upper Pleistocene sediments deposited in the incised valleys include interpreted lowstand fluvial gravels, early transgressive channel sands and floodplain silts, and late transgressive estuarine sands and gravels. Older Pleistocene sediments are inferred to have been deposited before and during the 120 ka highstand (isotope stage 5). They consist of sandy calcarenites deposited in high‐energy tide‐dominated shelf environments. Still older shelf and valley‐fill sediments underlie these. The contrast between the Holocene muddy clastic sediments and the sandy carbonates deposited by the 120 ka highstand suggests that either the climate was more arid in the past, with less fluvial transport, or that mud was more effectively trapped in estuaries, allowing development of carbonate depositional environments inshore. 相似文献
40.
The conditional acid dissociation constants (pKa′) of two sulfonephthalein dyes, thymol blue (TB) and m-cresol purple (mCP), were assessed throughout the estuarine salinity range (0<S<40) using a tris/tris–HCl buffer and spectrophotometric measurement. The salinity dependence of the pKa′ of both dyes was fitted to the equations (25 °C, total proton pH scale, mol kg soln−1):The estimated accuracy of pH measurements using these calculated pKa′ values is considered to be comparable to that possible with careful use of a glass electrode (±0.01 pH unit) but spectrophotometric measurements in an estuary have the significant advantage that it is not necessary to calibrate an electrode at different salinities. pH was measured in an estuary over a tidal cycle with a precision of ±0.0005 pH unit at high (S>30) salinity, and ±0.002 pH unit at low (S<5) salinity. The pH increased rapidly in the lower salinity ranges (0<S<15) but less rapidly at higher salinities. 相似文献