首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   293篇
  免费   12篇
  国内免费   4篇
测绘学   4篇
大气科学   30篇
地球物理   53篇
地质学   117篇
海洋学   30篇
天文学   38篇
综合类   3篇
自然地理   34篇
  2024年   2篇
  2022年   1篇
  2021年   3篇
  2020年   6篇
  2019年   11篇
  2018年   7篇
  2017年   9篇
  2016年   12篇
  2015年   10篇
  2014年   12篇
  2013年   25篇
  2012年   12篇
  2011年   29篇
  2010年   19篇
  2009年   14篇
  2008年   19篇
  2007年   10篇
  2006年   15篇
  2005年   13篇
  2004年   8篇
  2003年   1篇
  2002年   7篇
  2001年   7篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   8篇
  1992年   7篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   5篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
  1971年   2篇
排序方式: 共有309条查询结果,搜索用时 546 毫秒
191.
Climate change impacts food production systems, particularly in locations with large, vulnerable populations. Elevated greenhouse gases (GHG), as well as land cover/land use change (LCLUC), can influence regional climate dynamics. Biophysical factors such as topography, soil type, and seasonal rainfall can strongly affect crop yields. We used a regional climate model derived from the Regional Atmospheric Modeling System (RAMS) to compare the effects of projected future GHG and future LCLUC on spatial variability of crop yields in East Africa. Crop yields were estimated with a process-based simulation model. The results suggest that: (1) GHG-influenced and LCLUC-influenced yield changes are highly heterogeneous across this region; (2) LCLUC effects are significant drivers of yield change; and (3) high spatial variability in yield is indicated for several key agricultural sub-regions of East Africa. Food production risk when considered at the household scale is largely dependent on the occurrence of extremes, so mean yield in some cases may be an incomplete predictor of risk. The broad range of projected crop yields reflects enormous variability in key parameters that underlie regional food security; hence, donor institutions’ strategies and investments might benefit from considering the spatial distribution around mean impacts for a given region. Ultimately, global assessments of food security risk would benefit from including regional and local assessments of climate impacts on food production. This may be less of a consideration in other regions. This study supports the concept that LCLUC is a first-order factor in assessing food production risk.  相似文献   
192.
A geochemical proxy for surface ocean nutrient concentrations recorded in coral skeleton could provide new insight into the connections between sub-seasonal to centennial scale nutrient dynamics, ocean physics, and primary production in the past. Previous work showed that coralline P/Ca, a novel seawater phosphate proxy, varies synchronously with annual upwelling-driven cycles in surface water phosphate concentration. However, paired contemporaneous seawater phosphate time-series data, needed for rigorous calibration of the new proxy, were lacking. Here we present further development of the P/Ca proxy in Porites lutea and Montastrea sp. corals, showing that skeletal P/Ca in colonies from geographically distinct oceanic nutrient regimes is a linear function of seawater phosphate (POSW) concentration. Further, high-resolution P/Ca records in multiple colonies of Pavona gigantea and Porites lobata corals grown at the same upwelling location in the Gulf of Panamá were strongly correlated to a contemporaneous time-series record of surface water POSW at this site (r2 = 0.7-0.9). This study supports application of the following multi-colony calibration equations to down-core records from comparable upwelling sites, resulting in ±0.2 and ±0.1 μmol/kg uncertainties in POSW reconstructions from P. lobata and P. gigantea, respectively.
  相似文献   
193.
The Khaluta carbonatite complex comprizes fenites, alkaline syenites and shonkinites, and calcite and dolomite carbonatites. Textural and compositional criteria, melt inclusions, geochemical and isotopic data, and comparisons with relevant experimental systems show that the complex formed by liquid immiscibility of a carbonate-saturated parental silicate melt. Mineral and stable isotope geothermometers and melt inclusion measurements for the silicate rocks and carbonatite all give temperatures of crystallization of 915–1,000°C and 890–470°C, respectively. Melt inclusions containing sulphate minerals, and sulphate-rich minerals, most notably apatite and monazite, occur in all of the lithologies in the Khaluta complex. All lithologies, from fenites through shonkinites and syenites to calcite and dolomite carbonatites, and to hydrothermal mineralisation are further characterized by high Ba and Sr activity, as well as that of SO3 with formation of the sulphate minerals baryte, celestine and baryte-celestine. Thus, the characteristic features of the Khaluta parental melt were elevated concentrations of SO3, Ba and Sr. In addition to the presence of SO3, calculated fO2 for magnetites indicate a high oxygen fugacity and that Fe+3>Fe+2 in the Khaluta parental melt. Our findings suggest that the mantle source for Khaluta carbonatite and associated rocks, as well as for other carbonatites of the West Transbaikalia carbonatite province, were SO3-rich and characterized by high oxygen fugacity.  相似文献   
194.
Abstract

This study compares the efficiency of two analytic approaches—qualitative and quantitative—to social network analysis for identifying stakeholder groups. Social network data were collected from 23 water and agriculture stakeholders in Arizona, USA, and analyzed quantitatively and qualitatively. Analysis of the sample in the original order of data collection found qualitative analysis was more efficient, in that it yielded a stable result—the identification of four stakeholder groups—within 16 interviews. In contrast, the quantitative analysis did not produce a stable result after 23 interviews. Repeated analyses with randomized order and reverse order samples found qualitative approaches yielded more stable results, took about the same number of interviews to yield results, and produced slightly fewer stakeholder groups compared to quantitative approaches. Our findings suggest that, in resource-constrained projects, qualitative social network analysis for identifying stakeholder groups can provide an efficient alternative to conventional quantitative social network analysis.  相似文献   
195.
Basin-centric long short-term memory (LSTM) network models have recently been shown to be an exceptionally powerful tool for stream temperature (Ts) temporal prediction (training in one period and predicting in another period at the same sites). However, spatial extrapolation is a well-known challenge to modelling Ts and it is uncertain how an LSTM-based daily Ts model will perform in unmonitored or dammed basins. Here we compiled a new benchmark dataset consisting of >400 basins across the contiguous United States in different data availability groups (DAG, meaning the daily sampling frequency) with and without major dams, and studied how to assemble suitable training datasets for predictions in basins with or without temperature monitoring. For prediction in unmonitored basins (PUB), LSTM produced a root-mean-square error (RMSE) of 1.129°C and an R2 of 0.983. While these metrics declined from LSTM's temporal prediction performance, they far surpassed traditional models' PUB values, and were competitive with traditional models' temporal prediction on calibrated sites. Even for unmonitored basins with major reservoirs, we obtained a median RMSE of 1.202°C and an R2 of 0.984. For temporal prediction, the most suitable training set was the matching DAG that the basin could be grouped into (for example, the 60% DAG was most suitable for a basin with 61% data availability). However, for PUB, a training dataset including all basins with data was consistently preferred. An input-selection ensemble moderately mitigated attribute overfitting. Our results indicate there are influential latent processes not sufficiently described by the inputs (e.g., geology, wetland covers), but temporal fluctuations can still be predicted well, and LSTM appears to be a highly accurate Ts modelling tool even for spatial extrapolation.  相似文献   
196.
This study reports the nature and timing of Quaternary fluvial activity in the Fitzroy River basin, which drains a diverse 143,000 km2 area in northeastern Queensland, before discharging into the Great Barrier Reef Marine Park. The catchment consists of an extensive array of channel and floodplain types that we show have undergone large-scale fluvial adjustment in-channel planform, geometry and sinuosity. Optically stimulated luminescence (OSL) dating of quartz sediments from fifteen (3–18 m) floodplain cores throughout the basin indicates several discrete phases of active bedload activity: at ~105–85 ka in Marine Isotope Stage (MIS) 5, at ~50–40 ka (MIS 3), and at ~30–10 ka (MIS 3/2). The overall timing of late Quaternary fluvial activity correlates well with previous accounts from across Australia with rivers being primarily active during interstadials. Fluvial activity, however, does not appear to have been synchronous throughout the basin’s major sub-catchments. Fluvial activity throughout MIS 2 (i.e. across the Last Glacial Maximum) in the meandering channels of the Fitzroy correlates well with regional data in tropical northeastern Queensland, and casts new light on the river response to reduced rainfall and vegetation cover suggested by regional palaeoclimate indicators. Moreover, the absence of a strong Holocene signal is at odds with previous accounts from elsewhere throughout Australia. The latitudinal position of the Fitzroy across the Tropic of Capricorn places this catchment at a key location for elucidating the main hydrological drivers of Quaternary fluvial activity in northeastern Australia, and especially for determining tropical moisture sources feeding into the headwaters of Cooper Creek, a major river system of the continental interior.  相似文献   
197.
Simon et al. (2005) reported low Ti3+/Ti4+ values in Ti-rich pyroxenes in the Wark-Lovering rim (WL) of a Leoville CAI (144A) as compared to the interior of the inclusion. These electron microprobe analyses were interpreted as evidence that the growth of the WL rim is the manifestation of an evolution to a more oxidizing environment. Further work by Simon et al. (2007) used XANES analyses to argue for higher Ti3+ abundances and interpreted the data of Simon et al. (2005) as the result of X-ray contamination by neighboring phases, specifically spinel. Late-stage alteration was also included as a possible explanation.To investigate further the oxidation state of Ti in WL rims, we re-analyzed Leoville 144A to obtain a more complete data set of Ti3+/Ti4+ values in the Wark-Lovering rims. We conducted experiments on spinel-mixing to determine whether this was a plausible explanation for the observed paucity of Ti3+ in WL rims. While we found a wider range of Ti3+/Ti4+ in these WL rim data than in our original study, our new data show that the original conclusion that rims are lower in Ti3+/Ti4+ than interiors remains valid. We conclusively rule out spinel-mixing as an explanation for our data, and we see no clear inconsistency between our electron microprobe data and the XANES data. The WL rim of CAI Ef3 was also analyzed by EMPA and compared to the results of Leoville 144A.To predict compositional consequences of this hypothesis, we constructed a reaction space between Ti-rich pyroxene in the WL rim, perovskite, Mg(g), Ca(g), O2(g), and SiO(g). We find the oxidation of Ti3+, coupled with Ti loss via perovskite formation, explains many features of WL rim EMPA analyses. We maintain that the WL rim pyroxenes are compositionally distinct from those in the interior, and are evidence of a more oxidizing environment during WL rim formation.  相似文献   
198.
Radiolabelled assays and compound-specific stable isotope analysis (CSIA) were used to assess methyl tert-butyl ether (MTBE) biodegradation in an unleaded fuel plume in a UK chalk aquifer, both in the field and in laboratory microcosm experiments. The 14C-MTBE radiorespirometry studies demonstrated widespread potential for aerobic and anaerobic MTBE biodegradation in the aquifer. However, δ13C compositions of MTBE in groundwater samples from the plume showed no significant 13C enrichment that would indicate MTBE biodegradation at the field scale. Carbon isotope enrichment during MTBE biodegradation was assessed in the microcosms when dissolved O2 was not limiting, compared with low in situ concentrations (2 mg/L) in the aquifer, and in the absence of O2. The microcosm experiments showed ubiquitous potential for aerobic MTBE biodegradation in the aquifer within hundreds of days. Aerobic MTBE biodegradation in the microcosms produced an enrichment of 7‰ in the MTBE δ13C composition and an isotope enrichment factor (ε) of −1.53‰ when dissolved O2 was not limiting. However, for the low dissolved O2 concentration of up to 2 mg/L that characterizes most of the MTBE plume fringe, aerobic MTBE biodegradation produced an enrichment of 0.5-0.7‰, corresponding to an ε value of −0.22‰ to −0.24‰. No anaerobic MTBE biodegradation occurred under these experimental conditions. These results suggest the existence of a complex MTBE-biodegrading community in the aquifer, which may consist of different aerobic species competing for MTBE and dissolved O2. Under low O2 conditions, the lower fractionating species have been shown to govern overall MTBE C-isotope fractionation during biodegradation, confirming the results of previous laboratory experiments mixing pure cultures. This implies that significant aerobic MTBE biodegradation could occur under the low dissolved O2 concentration that typifies the reactive fringe zone of MTBE plumes, without producing detectable changes in the MTBE δ13C composition. This observed insensitivity of C isotope enrichment to MTBE biodegradation could lead to significant underestimation of aerobic MTBE biodegradation at field scale, with an unnecessarily pessimistic performance assessment for natural attenuation. Site-specific C isotope enrichment factors are, therefore, required to reliably quantify MTBE biodegradation, which may limit CSIA as a tool for the in situ assessment of MTBE biodegradation in groundwater using only C isotopes.  相似文献   
199.
The formation of beach megacusps along the shoreline of southern Monterey Bay, CA, is investigated using time-averaged video and simulated with XBeach, a recently developed coastal sediment transport model. Investigations focus on the hydrodynamic role played by the bay's ever-present rip channels. A review of four years of video and wave data from Sand City, CA, indicates that megacusps most often form shoreward of rip channels under larger waves (significant wave height (Hs) = 1.5–2.0 m). However, they also occasionally appear shoreward of shoals when waves are smaller (Hs ~ 1 m) and the mean water level is higher on the beach. After calibration to the Sand City site, XBeach is shown to hindcast measured shoreline change moderately well (skill = 0.41) but to overpredict the erosion of the swash region and beach face. Simulations with small to moderate waves (Hs = 0.5–1.2 m) suggest, similar to field data, that megacusps will form shoreward of either rip channels or shoals, depending on mean daily water level and pre-existing beach shape. A frequency-based analysis of sediment transport forcing is performed, decomposing transport processes to the mean, infragravity, and very-low-frequency (VLF) contributions for two highlighted cases. Results indicate that the mean flow plays the dominant role in both types of megacusp formation, but that VLF oscillations in sediment concentration and advective flow are also significant.  相似文献   
200.
Researchers and policy makers increasingly recognize the need to adapt to future changes in climate, given that past emissions of greenhouse gases have already committed the world to some level of climate change. However, the current understanding of the costs and benefits of adaptation measures is still fairly rudimentary, and far from comprehensive. An assessment is presented of the current state of knowledge on the magnitude of adaptation costs in the United States. While incomplete, the studies suggest that adaptation cost could be as high as tens or hundreds of billions of dollars per year by the middle of this century. Key studies are identified in each sector, and the cost estimates and approaches to cost estimation are surveyed. Methodological issues are highlighted in interpreting, comparing, and aggregating adaptation cost estimates. Policy recommendations are made along with appropriate steps to make future adaptation cost studies more comparable within and across sectors and more accessible and relevant to policy and decision makers.

Policy relevance

Designing and implementing climate change adaptation policy requires good information about the effectiveness and cost of available adaptive options. The current state of knowledge on adaptation costs in the United States is assessed and significant gaps in the literature are highlighted – particularly in terms of sectoral and geographic coverage – as well as inconsistencies in methodologies and assumptions that hamper comparison across studies. Critical steps are identified that can be taken to make adaptation cost studies more accessible and useful to decision makers. The findings and recommendations are relevant to adaptation cost studies globally, not just in the United States.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号