首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6107篇
  免费   273篇
  国内免费   35篇
测绘学   195篇
大气科学   478篇
地球物理   2248篇
地质学   2097篇
海洋学   344篇
天文学   749篇
综合类   38篇
自然地理   266篇
  2022年   51篇
  2021年   127篇
  2020年   129篇
  2019年   96篇
  2018年   249篇
  2017年   265篇
  2016年   377篇
  2015年   293篇
  2014年   339篇
  2013年   469篇
  2012年   369篇
  2011年   355篇
  2010年   289篇
  2009年   293篇
  2008年   240篇
  2007年   187篇
  2006年   184篇
  2005年   126篇
  2004年   141篇
  2003年   115篇
  2002年   111篇
  2001年   104篇
  2000年   64篇
  1999年   65篇
  1998年   83篇
  1997年   64篇
  1996年   42篇
  1995年   48篇
  1994年   50篇
  1993年   42篇
  1992年   47篇
  1991年   57篇
  1990年   59篇
  1989年   44篇
  1987年   38篇
  1986年   38篇
  1985年   33篇
  1984年   46篇
  1983年   37篇
  1982年   36篇
  1981年   34篇
  1980年   31篇
  1979年   40篇
  1978年   28篇
  1977年   31篇
  1976年   33篇
  1975年   31篇
  1974年   31篇
  1973年   40篇
  1971年   38篇
排序方式: 共有6415条查询结果,搜索用时 0 毫秒
891.
Cyclogenesis and long-fetched winds along the southeastern coast of South America may lead to floods in populated areas, as the Buenos Aires Province, with important economic and social impacts. A numerical model (SMARA) has already been implemented in the region to forecast storm surges. The propagation time of the surge in such extensive and shallow area allows the detection of anomalies based on observations from several hours up to the order of a day prior to the event. Here, we investigate the impact and potential benefit of storm surge level data assimilation into the SMARA model, with the objective of improving the forecast. In the experiments, the surface wind stress from an ensemble prediction system drives a storm surge model ensemble, based on the operational 2-D depth-averaged SMARA model. A 4-D Local Ensemble Transform Kalman Filter (4D-LETKF) initializes the ensemble in a 6-h cycle, assimilating the very few tide gauge observations available along the northern coast and satellite altimeter data. The sparse coverage of the altimeters is a challenge to data assimilation; however, the 4D-LETKF evolving covariance of the ensemble perturbations provides realistic cross-track analysis increments. Improvements on the forecast ensemble mean show the potential of an effective use of the sparse satellite altimeter and tidal gauges observations in the data assimilation prototype. Furthermore, the effects of the localization scale and of the observational errors of coastal altimetry and tidal gauges in the data assimilation approach are assessed.  相似文献   
892.
Phosphorus (P) is one of the major limiting nutrient in many freshwater ecosystems. During the last decade, attention has been focused on the fluxes of suspended sediment and particulate P through freshwater drainage systems because of severe eutrophication effects in aquatic ecosystems. Hence, the analysis and prediction of phosphorus and sediment dynamics constitute an important element for ecological conservation and restoration of freshwater ecosystems. In that sense, the development of a suitable prediction model is justified, and the present work is devoted to the validation and application of a predictive soluble reactive phosphorus (SRP) uptake and sedimentation models, to a real riparian system of the middle Ebro river floodplain. Both models are coupled to a fully distributed two‐dimensional shallow‐water flow numerical model. The SRP uptake model is validated using data from three field experiments. The model predictions show a good accuracy for SRP concentration, where the linear regressions between measured and calculated values of the three experiments were significant (r2 ≥ 0.62; p ≤ 0.05), and a Nash–Sutcliffe coefficient (E) that ranged from 0.54 to 0.62. The sedimentation model is validated using field data collected during two real flooding events within the same river reach. The comparison between calculated and measured sediment depositions showed a significant linear regression (p ≤ 0.05; r2 = 0.97) and an E that ranged from 0.63 to 0.78. Subsequently, the complete model that includes flow dynamics, solute transport, SRP uptake and sedimentation is used to simulate and analyse floodplain sediment deposition, river nutrient contribution and SRP uptake. According to this analysis, the main SRP uptake process appears to be the sediment sorption. The analysis also reveals the presence of a lateral gradient of hydrological connectivity that decreases with distance from the river and controls the river matter contribution to the floodplain. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
893.
Metal loads were determined from water samples collected under different streamflow conditions (baseflow and storm events) in a rural catchment (NW Spain) during 4 years. A study at annual, seasonal and storm‐event scales was carried out. In all analysed scales, the export order was Fe > Al > Mn > Zn > Cu. A high inter‐annual, seasonal and storm‐event scale variability of metal load was observed. The total metal loads in stream were higher during baseflow conditions than during storm events, which only represented 4% of the duration of the study period and 25% of streamflow. During storm events, both Al and Fe loads accounted 45% of the total load of the study period, whereas Mn, Cu and Zn loads represented 42%, 33% and 24%, respectively. This highlights the role of high flows on metal export. Only four big events exported around 30% of load of each metal transported in events. At all time scales, a prevalence of export of particulate metals over dissolved metals was observed, more pronounced for Al, Fe and Mn than for Cu and Zn. The export of metals in the Corbeira catchment is influenced by runoff and, to a lesser extent, by the rainfall amount. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
894.
The regional frequency analysis of extreme annual rainfall data is a useful methodology in hydrology to obtain certain quantile values when no long data series are available. The most crucial step in the analysis is the grouping of sites into homogeneous regions. This work presents a new grouping criterion based on some multifractal properties of rainfall data. For this purpose, a regional frequency analysis of extreme annual rainfall data from the Maule Region (Chile) has been performed. Daily rainfall data series of 53 available stations have been studied, and their empirical moments scaling exponent functions K(q) have been obtained. Two characteristics parameters of the K(q) functions (γmax and K(0)) have been used to group the stations into three homogeneous regions. Only five sites have not been possible to include into any homogenous regions, being the local frequency analysis of extreme daily rainfall the most appropriate method to be used at these locations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
895.
The synthesis of experimental understanding of catchment behaviour and its translation into qualitative perceptual models is an important objective of hydrological sciences. We explore this challenge by examining the cumulative understanding of the hydrology of three experimental catchments and how it evolves through the application of different investigation techniques. The case study considers the Huewelerbach, Weierbach and Wollefsbach headwater catchments of the Attert basin in Luxembourg. Subsurface investigations including bore holes and pits, analysis of soil samples and Electrical Resistivity Tomography measurements are presented and discussed. Streamflow and tracer data are used to gain further insights into the streamflow dynamics of the catchments, using end‐member mixing analysis and hydrograph separation based on dissolved silica and electrical conductivity. We show that the streamflow generating processes in all three catchments are controlled primarily by the subsolum and underlying bedrock. In the Huewelerbach, the permeable sandstone formation supports a stable groundwater component with little seasonality, which reaches the stream through a series of sources at the contact zone with the impermeable marls formation. In the Weierbach, the schist formation is relatively impermeable and supports a ‘fill and spill’‐type of flow mechanism; during wet conditions, it produces a delayed response dominated by pre‐event water. In the Wollefsbach, the impermeable marls formation is responsible for a saturation‐excess runoff generating process, producing a fast and highly seasonal response dominated by event water. The distinct streamflow generating processes of the three catchments are represented qualitatively using perceptual models. The perceptual models are in turn translated into quantitative conceptual models, which simulate the hydrological processes using networks of connected reservoirs and transfer functions. More generally, the paper illustrates the evolution of perceptual models based on experimental fieldwork data, the translation of perceptual models into conceptual models and the value of different types of data for processes understanding and model representation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
896.
The generation of vapor‐phase contaminant plumes within the vadose zone is of interest for contaminated site management. Therefore, it is important to understand vapor sources such as non‐aqueous‐phase liquids (NAPLs) and processes that govern their volatilization. The distribution of NAPL, gas, and water phases within a source zone is expected to influence the rate of volatilization. However, the effect of this distribution morphology on volatilization has not been thoroughly quantified. Because field quantification of NAPL volatilization is often infeasible, a controlled laboratory experiment was conducted in a two‐dimensional tank (28 cm × 15.5 cm × 2.5 cm) with water‐wet sandy media and an emplaced trichloroethylene (TCE) source. The source was emplaced in two configurations to represent morphologies encountered in field settings: (1) NAPL pools directly exposed to the air phase and (2) NAPLs trapped in water‐saturated zones that were occluded from the air phase. Airflow was passed through the tank and effluent concentrations of TCE were quantified. Models were used to analyze results, which indicated that mass transfer from directly exposed NAPL was fast and controlled by advective‐dispersive‐diffusive transport in the gas phase. However, sources occluded by pore water showed strong rate limitations and slower effective mass transfer. This difference is explained by diffusional resistance within the aqueous phase. Results demonstrate that vapor generation rates from a NAPL source will be influenced by the soil water content distribution within the source. The implications of the NAPL morphology on volatilization in the context of a dynamic water table or climate are discussed.  相似文献   
897.
898.
899.
900.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号