Discrete element method has been widely adopted to simulate processes that are challenging to continuum-based approaches. However, its computational efficiency can be greatly compromised when large number of particles are required to model regions of less interest to researchers. Due to this, the application of DEM to boundary value problems has been limited. This paper introduces a three-dimensional discrete element–finite difference coupling method, in which the discrete–continuum interactions are modeled in local coordinate systems where the force and displacement compatibilities between the coupled subdomains are considered. The method is validated using a model dynamic compaction test on sand. The comparison between the numerical and physical test results shows that the coupling method can effectively simulate the dynamic compaction process. The responses of the DEM model show that dynamic stress propagation (compaction mechanism) and tamper penetration (bearing capacity mechanism) play very different roles in soil deformations. Under impact loading, the soil undergoes a transient weakening process induced by dynamic stress propagation, which makes the soil easier to densify under bearing capacity mechanism. The distribution of tamping energy between the two mechanisms can influence the compaction efficiency, and allocating higher compaction energy to bearing capacity mechanism could improve the efficiency of dynamic compaction.
Science China Earth Sciences - Helium gas is a scarce but important strategic resource, which is usually associated with natural gas. Presently, only one extra-large helium-rich gas field has been... 相似文献
Early Cambrian and Mid-Late Neoproterozoic volcanic rocks in China are widespread on several Precambrian continental blocks,which had aggregated to form part of the Rodinia supercontinent by ca.900 Ma.... 相似文献
Debris flows frequently occurred in Wenchuan earthquake region from 2008 to 2010, resulting in great damage to localities and being a prolonged threat to reconstruction. Forty three events' data including debris-flow volume, sediment volume and watershed area are analyzed and compared with other debris-flow events in Eastern Italian Alps, burned areas in USA and in Taiwan. The analysis reveals that there is a strong empirical relationship between debris-flow volume and loose materials volume in the earthquake region. In addition, the relationship between debris-flow volume and watershed area in the earthquake region has a wider variation range than that in other three regions while the debris volume also appears to be larger than that in the other three regions, which implies the volume of debris flows with strong influence of earthquakes is larger than that with no such influence and it is hard to predict the post-quake volume only by the watershed area. The comparison of the maximal debris-flow erosion modulus in the Wenchuan region and in Taiwan indicates that debris flows will be very active in a short time after strong earthquake. 相似文献
Mississippi Valley-type(MVT)Pb-Zn deposits serve as the world’s major supply of Pb-Zn resources.However,the age constraint of MVT Pb-Zn deposits has long been a big challenge,due to the lack of minerals that are unequivocally related to ore deposition and that can be used for radioisotopic dating.Here we show sporopollens can provide useful chronological information on the Changdong MVT Pb-Zn deposit in the Simao basin,Sanjiang belt,West China.The Pb-Zn ores in the Changdong deposit are hosted by internal sediments in paleo-karst caves of meteoric origin.Sphalerite and galena occur as replacements of carbonate minerals and void infillings in the internal sediments.The relations suggest that the Pb-Zn mineralization occurred after the deposition of the internal sediments.A palynological assemblage mainly composed of angiosperm pollen dominated by Castanea,Quercus,and Carya and fern spores dominated by Polypodiaceae,Pteris,and Athyriaceae was identified.These pollen and spores place the ore-hosting internal sediments and the Changdong paleo-karst at early to middle Oligocene.Consequently,the Changdong Pb-Zn deposit must have formed after the early Oligocene(~34 Ma).These age constraints,together with the geological characteristics,indicate that the Changdong Pb-Zn deposit is a paleo-karst-controlled MVT deposit related to fold-thrust systems in the Sanjiang belt.The Changdong deposit is similar to other MVT Pb-Zn deposits in the northern part of the Sanjiang belt,making it possible to extend this Pb-Zn belt 500 km further to the South.Results presented here highlights the potential of sporopollens in dating the age of MVT deposits related to paleo-karst formation in young orogenic belts. 相似文献
The hydrology and water balance of megadunes and lakes have been investigated in the Badain Jaran Desert of China. Field observations and analyses of sand layer water content, field capacity, secondary salt content, and grain size reveal 3 types of important natural phenomenon: (a) vegetation bands on the leeward slope of the megadunes reflect the hydrological regime within the sandy vadose zone; (b) seepage, wet sand deposits, and secondary salt deposits indicate the pattern of water movement within the sandy vadose zone; (c) zones of groundwater seeps and descending springs around the lakes reflect the influence of the local topography on the hydrological regime of the megadunes. The seepage exposed on the sloping surface of the megadunes and gravity water contained within the sand layer confirm the occurrence of preferential flow within the vadose zone of the megadunes. Alternating layers of coarse and fine sand create the conditions for the formation of preferential flows. The preferential flows promote movement of water within the sand layer water that leads to deep penetration of water within the megadunes and ultimately to the recharging of groundwater and lake water. Our results indicate that a positive water balance promotes recharge of the megadunes, which depends on the high permeability of the megadune material, the shallow depth of the surface sand layer affected by evaporation, the occurrence of rainfall events exceeding 15 mm, and the sparse vegetation cover. Water balance estimates indicate that the annual water storage of the megadunes is about 7.5 mm, accounting for only 8% of annual precipitation; however, the shallow groundwater per unit area under the megadunes receives only 3.6% of annual precipitation, but it is still able to maintain a dynamic balance of the lake water. From a water budget perspective, the annual water storage in the megadunes is sufficient to serve as a recharge source for lake water, thereby enabling the long‐term persistence of the lakes. Overall, our findings demonstrate that precipitation is a significant component of the hydrological cycle in arid deserts. 相似文献