首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   500篇
  免费   4篇
  国内免费   7篇
测绘学   14篇
大气科学   22篇
地球物理   117篇
地质学   155篇
海洋学   39篇
天文学   99篇
综合类   6篇
自然地理   59篇
  2021年   6篇
  2019年   6篇
  2018年   5篇
  2017年   8篇
  2016年   12篇
  2015年   19篇
  2014年   23篇
  2013年   33篇
  2012年   19篇
  2011年   24篇
  2010年   23篇
  2009年   37篇
  2008年   19篇
  2007年   23篇
  2006年   18篇
  2005年   22篇
  2004年   20篇
  2003年   17篇
  2002年   8篇
  2001年   7篇
  2000年   5篇
  1999年   7篇
  1998年   8篇
  1997年   6篇
  1996年   3篇
  1995年   6篇
  1994年   7篇
  1993年   7篇
  1991年   8篇
  1990年   4篇
  1989年   4篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   7篇
  1983年   9篇
  1982年   5篇
  1981年   7篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   10篇
  1976年   6篇
  1975年   5篇
  1973年   8篇
  1972年   4篇
  1971年   3篇
  1970年   3篇
  1969年   2篇
  1968年   4篇
排序方式: 共有511条查询结果,搜索用时 15 毫秒
41.
Climate Warming and Water Management Adaptation for California   总被引:1,自引:3,他引:1  
The ability of California's water supply system to adapt to long-term climatic and demographic changes is examined. Two climate warming and a historical climate scenario are examined with population and land use estimates for the year 2100 using a statewide economic-engineering optimization model of water supply management. Methodologically, the results of this analysis indicate that for long-term climate change studies of complex systems, there is considerable value in including other major changes expected during a long-term time-frame (such as population changes), allowing the system to adapt to changes in conditions (a common feature of human societies), and representing the system in sufficient hydrologic and operational detail and breadth to allow significant adaptation. While the policy results of this study are preliminary, they point to a considerable engineering and economic ability of complex, diverse, and inter-tied systems to adapt to significant changes in climate and population. More specifically, California's water supply system appears physically capable of adapting to significant changes in climate and population, albeit at a significant cost. Such adaptation would entail large changes in the operation of California's large groundwater storage capacity, significant transfers of water among water users, and some adoption of new technologies.  相似文献   
42.
43.
Accurate upward continuation of gravity anomalies supports future precision, free-inertial navigation systems, since the latter cannot by themselves sense the gravitational field and thus require appropriate gravity compensation. This compensation is in the form of horizontal gravity components. An analysis of the model errors in upward continuation using derivatives of the standard Pizzetti integral solution (spherical approximation) shows that discretization of the data and truncation of the integral are the major sources of error in the predicted horizontal components of the gravity disturbance. The irregular shape of the data boundary, even the relatively rough topography of a simulated mountainous region, has only secondary effect, except when the data resolution is very high (small discretization error). Other errors due to spherical approximation are even less important. The analysis excluded all measurement errors in the gravity anomaly data in order to quantify just the model errors. Based on a consistent gravity field/topographic surface simulation, upward continuation errors in the derivatives of the Pizzetti integral to mean altitudes of about 3,000 and 1,500 m above the mean surface ranged from less than 1 mGal (standard deviation) to less than 2 mGal (standard deviation), respectively, in the case of 2 arcmin data resolution. Least-squares collocation performs better than this, but may require significantly greater computational resources.  相似文献   
44.
A cellular automata model of surface water flow   总被引:1,自引:0,他引:1  
Previous cellular automata models of surface water flow have been constructed to reflect steady, gradually‐varied flow conditions. While these models are extremely important in showing the near‐equilibrium forms that result from the interactions of water and boundary material, highly dynamic forms and processes require models that represent unsteady flow conditions. In order to simulate unsteady flow in a cellular model of surface water flow, the conservation of mass and the Manning's equations are coupled with an algorithm to delay the movement of water from one pixel to the next until the correct timing is reached. This approach yields highly realistic flood wave hydrographs when compared with flood observations in the Walnut Gulch Experiment Watershed. Coupling this unsteady flow model with simple laws of sediment erosion, transport, and deposition should allow event‐based simulations of watershed and river channel geomorphologic change. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
45.
We present analyses of spheres magnetically extracted from mid-Pacific abyssal clays 0–500,000 years old. The concentration of spheres >200 μm is a few times 10 ppb. The spheres were divided into three groups using their dominant mineralogy, and are named iron, glassy, and silicate. Most spheres were formed from particles that completely melted as they separated from their parent meteoroids during the ablation process. However, some of the silicate spheres contain relict grains of the parent meteoroids that did not experience any melting. Typically, these relict grains are olivine crystals whose cores are Mg-rich (Fo89–99). Commonly the outer rims of these grains were altered during heating. Other relict mineral grains include enstatite, ferrous spinel, chromite, and pentlandite.The three groups of spheres may possibly indicate some genetic significance. It seems reasonable to expect iron-rich spheres to be produced during ablation of iron and metal-rich silicate meteoroids. Metal spheres are probably not produced by ablation of predominantly silicate meteoroids because studies of fusion crusts and laboratory ablated silicate materials have never yielded separate metal spheres, but rather have produced spheres with intergrown iron oxide and silicate phases. The iron spheres possess identical mineralogy with the fusion crusts of Boguslavka, Norfork, and N'Kandhla iron meteorites as well as with the ablation debris created in the laboratory using iron and nickel-iron samples.The glassy spheres are considerably more Fe-rich than the silicate spheres. They consist of magnetite and a Fe-rich glass which is relatively low in Si. Some of these spheres may have experienced pronounced volatile depletion during the ablation process and could have been derived from silicate or metal-rich silicate meteoroids.The silicate spheres are undoubtedly derived from ablation of stony meteoroids. Two of the mineral assemblages occurring in these spheres (olivine-magnetite-glass and sulfide) are identical to those described in the natural fusion crusts of Allende, Orgueil, and Murchison meteorites, laboratory-made ablation debris, and melted interplanetary dust collected from the stratosphere. Bulk compositions and relict grains are useful for determining the parent meteoroid types for the silicate spheres. Bulk analyses of spheres have non-volatile elemental abundances similar to chondritic abundances. Analyses of relict grains identified high-temperature minerals which often occur as larger crystals in a fine-grained matrix that is characterized by voids. These voids were caused by escaping volatiles as minerals decomposed during ablation. Because larger crystals of higher-temperature minerals are associated with fine-grained, low-temperature, volatile-rich matrix, the obvious candidates for parent meteoroids of the silicate spheres containing relict grains are carbonaceous chondrites.  相似文献   
46.
Although the creation of edges during forest fragmentation can have important abiotic and biotic impacts, especially under conditions of future climate change, mechanistic models of edge effects have not been forthcoming. A simple numerical model of two-dimensional heat flow is developed and applied to a vertical forest/clearcut edge profile and to simulated fragmented landscapes. Height-specific thermal diffusivity and conductivity in the forest were assumed to vary in proportion to foliage densities measured in the central Amazon. In the edge profile, the clearcut that abutted the edge served as a heat source and its temperature was maintained at a constant value higher than in the initially cooler forest. In the fragmented landscapes, simulated treefall gaps were heat sources whose temperature varied with sun movements during the day. Gap frequency was varied so as to approximate the gap coverage observed in selectively logged forests. In one set of simulations, temperature in the openings was systematically varied; in another, thermal diffusivity of the forest was varied. Along the edge profile, high temperatures in the clearcut were rapidly transmitted into the upper canopy due to additive edge effects. Temperatures in the forest understory were also very sensitive to clearcut temperatures due to relatively sparse understory foliage. An overall increase in forest diffusivity led to markedly higher temperatures close to the edge and a more even temperature distribution among height strata. In fragmented landscapes, total gap coverage and additivity from neighboring gaps strongly influenced forest temperatures. At low conductivities, heat flowed only into the forest close to the gaps and hence forest temperature increased almost linearly with gap area. However, at high conductivities, heat flowed far into the forest and forest temperature varied as a function of gap density in the surrounding neighborhood. Because of these additive effects, slight increases in total gap area led to disproportionate changes in the thermal profile of the landscape. These results have important implications for the conservation of forest ecosystems.  相似文献   
47.
The common belief currently shared by many geoscientists concerning the climatic interpretation of limestones is that a warm-water environment is essential. This concept is not necessarily true because the rate and extent of terrigenous sediment dilution, rather than water temperature, is the primary factor determining whether or not a limestone forms at nearshore or continental shelf depths. Because carbonate productivity is lowest in cold climates, however, CaCO3 abundance and the thickness of carbonate accumulations tend to be least at high latitudes. In this regard present-day continental shelves and beaches offer a poor model for comparing cold-water and warm-water carbonates because of the generally emergent continental tectonic framework, recent eustatic sea-level changes, and the presence of ice caps at the modern poles.Typically, the influence of climate on non-reef continental shelf and beach environments cannot be clearly distinguished by the presence or absence of major taxonomic groups. Faunal diversity and equitability are more sensitive in this regard. The absence of shelf-depth inorganic carbonate precipitates, micrite envelopes, and peloids may also point to the cold-water origin of a rock. Skeletal mineralogy and oxygen isotopes of certain unrecrystallized carbonates may be good paleoclimatic indicators; however, trace elements and physical-textural attributes of the carbonate fraction are probably temperature insensitive.Previous studies of high-latitude continental shelves have concentrated merely on the abundance of calcareous material and there is seemingly a disproportionate amount of information with respect to low-latitude carbonate studies. Further research on cold-water carbonates may open up new avenues for alternative paleoenvironmental and paleoclimatic interpretations.  相似文献   
48.
Concentrations of the REE, Sc, Co, Fe, Zn, Ir, Na and Cr were determined by instrumental neutron activation and mass spectrometric isotope dilution analysis for mineral separates of the coarseand fine-grained types (group I and II of Martin and Mason's classification) of the Allende inclusions.These data, combined with data on mineral/liquid partition coefficients, oxygen isotope distributions and diffusion calculations, suggest the following: (1) Minerals in the coarse-grained inclusions (group I) crystallized in a closed system with respect to refractory elements. On the other hand, differences in oxygen isotope distributions among minerals preclude a totally molten stage in the history of the inclusion. Group I inclusions were formed by rapid condensation (either to liquid or solid) in a supercooled solar nebula; extrasolar pyroxene and spinel dust were included but not melted in the condensing inclusions, thus preserving their extrasolar oxygen isotope composition. REE were distributed by diffusion during the subsequent heating at subsolidus temperatures; because oxygen diffuses much more slowly at these temperatures, the oxygen isotope anomalies were preserved. (2) The fine-grained (group II) inclusions were also formed by condensation from a super-cooled nebular gas; however, REE-rich clinopyroxene and spinel were formed early and REE-poor sodalite and nepheline were formed later and mechanically mixed with clinopyroxene and spinel to form the inclusions. The REE patterns of the bulk inclusions and the mineral separates are fractionated, indicating that REE abundances in the gaseous phase were already fractionated at the time of condensation of the minerals. (3) Pre-existing Mg isotope anomalies in the coarse-grained inclusions must have been erased during the heating stage thus resetting the 26Al-26Mg chronometer.  相似文献   
49.
50.
Fecal indicator levels in nearshore waters of South Florida are routinely monitored to assess microbial contamination at recreational beaches. However, samples of sand from the surf zone and upper beach are not monitored which is surprising since sand may accumulate and harbor fecal-derived organisms. This study examined the prevalence of fecal indicator organisms in tidally-affected beach sand and in upper beach sand and compared these counts to levels in the water. Since indicator organisms were statistically elevated in sand relative to water, the study also considered the potential health risks associated with beach use and exposure to sand. Fecal coliforms, Escherichia coli, enterococci, somatic coliphages, and F(+)-specific coliphages were enumerated from sand and water at three South Florida beaches (Ft. Lauderdale Beach, Hollywood Beach, and Hobie Beach) over a 2-year period. Bacteria were consistently more concentrated in 100g samples of beach sand (2-23 fold in wet sand and 30-460 fold in dry sand) compared to 100ml samples of water. Somatic coliphages were commonly recovered from both sand and water while F(+)-specific coliphages were less commonly detected. Seeding experiments revealed that a single specimen of gull feces significantly influenced enterococci levels in some 3.1m(2) of beach sand. Examination of beach sand on a micro-spatial scale demonstrated that the variation in enterococci density over short distances was considerable. Results of multiple linear regression analysis showed that the physical and chemical parameters monitored in this study could only minimally account for the variation observed in indicator densities. A pilot epidemiological study was conducted to examine whether the length of exposure to beach water and sand could be correlated with health risk. Logistic regression analysis results provided preliminary evidence that time spent in the wet sand and time spent in the water were associated with a dose-dependent increase in gastrointestinal illness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号