首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   608篇
  免费   55篇
  国内免费   13篇
测绘学   21篇
大气科学   100篇
地球物理   151篇
地质学   197篇
海洋学   47篇
天文学   94篇
综合类   1篇
自然地理   65篇
  2022年   5篇
  2021年   22篇
  2020年   19篇
  2019年   16篇
  2018年   20篇
  2017年   25篇
  2016年   54篇
  2015年   31篇
  2014年   30篇
  2013年   46篇
  2012年   52篇
  2011年   38篇
  2010年   42篇
  2009年   51篇
  2008年   33篇
  2007年   30篇
  2006年   34篇
  2005年   26篇
  2004年   19篇
  2003年   14篇
  2002年   6篇
  2001年   13篇
  2000年   13篇
  1999年   7篇
  1998年   7篇
  1997年   7篇
  1996年   3篇
  1994年   2篇
  1993年   2篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1980年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有676条查询结果,搜索用时 15 毫秒
521.
The sublimation of falling snow may be an important component of the atmospheric water budget of the Mackenzie River Basin and many parts of the Arctic. To investigate this issue, a simple sublimation model is used along with surface precipitation observations and sonde data obtained during the autumn 1994 Beaufort and Arctic Storms Experiment (BASE). Model results are then compared with actual precipitation measurements at Inuvik and Tuktoyaktuk, sites in Northern Canada, to approximate mass loss due to sublimation. The sublimation results are found to vary in concert with cloud base height, precipitation intensity aloft and the nature of the precipitation. Atmospheric conditions are furthermore examined over a wide range of the Arctic, especially the Mackenzie River Basin, to assess to what degree the results can be generalized. The presence of a relatively dry near-surface layer, a favourable environment for sublimation, is a key feature of most sites during the early autumn storm period. Estimates of sublimational mass losses are found over Inuvik and Tuktoyaktuk using sonde derived cloud base heights and temperature and humidity profiles. Sublimation losses for such sites are found to be of the order of 40–60%, which shows that sublimation is indeed a significant process over the Mackenzie Basin and needs to be well handled in climate models. However, increasing the vertical resolution of the sublimation model to that of climate scales can dramatically affect predicted sublimation amounts; how to properly account for sublimation then remains a difficult task.  相似文献   
522.
523.
下地壳拆沉作用及大陆地壳演化   总被引:13,自引:0,他引:13  
讨论了下地壳拆沉作用的地球化学示踪方法,并以近来对秦岭-大别造山带和美国西部内华达岩基地区的研究成果为例,说明了下地壳拆沉在两地区壳-幔演化方面可能起的重要作用。  相似文献   
524.
The Chinkuashih district at northern Taiwan hosts one of the largest Au deposits in the western Pacific gold province. Gold were precipitated from hydrothermal solutions as native gold or incorporated into sulfides at a temperature range of 200-350 °C. The sulfides in ore mines have 187Os/188Os ratios varying from 0.139 to 0.249. The positive 187Os/188Os-1/Os correlation is consistent with derivation from the hybrid fluids containing various proportions of mantle and crustal components. The crustal component was the meteoric water that had acquired its Sr and Os isotopic signatures from the local sedimentary formations and dacitic intrusions. The mantle component was the magmatic fluid segregated from the dacitic magma by fractional crystallization. Based on the 187Os/188Os-1/Os correlation, the hybrid fluids forming the Chinkuashih sulfides contained less than 30% magmatic fluid, except for one sulfide sample from Hsumei, which required >40% magmatic fluid. Compared to meteoric water, the magmatic fluid contained a higher Os content (130 times higher) and was enriched in Os relative to Sr with an Os/Sr ratio two orders higher than that of the crustal fluid. Consequently, the Os budget in the hybrid fluids was controlled by the magmatic fluid, although the meteoric water was volumetrically dominated. If gold and Os behave similarly in chemistry, the Chinkuashih gold deposits are of mantle origin and the area where sulfides with the greatest mantle Os signature may host undiscovered gold deposits. Finally, the 187Os/188Os ratios of sulfides show no relationship with the mineral assemblages of sulfides, implying that the sulfide mineral assemblages reflect local surfacial redox conditions rather than the chemical characteristics of parental fluids.  相似文献   
525.
Fine-scale lava morphology has been classified on the ridge crest of the East Pacific Rise between 9°15′N and 10°02′N using an expert system classification method. This method establishes the means to classify complicated seafloor environments by integrating textural and geometric feature attributes from a high-resolution side-scan sonar dataset where ground-reference data are available from near-bottom visual observations. The classification in this study focuses upon mapping the lava morphology distribution of sheet, lobate, and pillow flows along the East Pacific Rise. The reliability of the classification has been evaluated using an accuracy assessment. The study region yields a coverage area of 37,814 m2 (44%) for lobate flows; 10,421 m2 (12%) for pillow flows; 15,096 m2 (18%) for sheet flows; 19,679 m2 (23%) for fissured areas; and 2,967 m2 (3%) for shadows or no data. The systematic distribution of lava morphology along the ridge found in this study supports the idea of using the regional distribution of surface morphology as an indicator of emplacement dynamics and supports an organization of the volcanic plumbing system at a third order segmentation scale beneath mid-ocean ridges.  相似文献   
526.
The Australian-Antarctic Discordance (AAD) is an anomalously deep and rugged zone of the Southeast Indian Ridge (SEIR) between 120° E and 128° E. The AAD contains the boundary between the Indian Ocean and Pacific Ocean isotopic provinces. We have analyzed SeaMarc II bathymetric and sidescan sonar data along the SEIR between 123° E and 128° E. The spreading center in the AAD, previously known to be divided into several transform-bounded sections, is further segmented by nontransform discontinuities which separate distinct spreading cells. Near the transform which bounds the AAD to the east, there is a marked change in the morphology of the spreading center, as well as in virtually every measured geochemical parameter. The spreading axis within the Discordance lies in a prominent rift valley similar to that observed along the Mid-Atlantic Ridge, although the full spreading rate within the AAD is somewhat faster than that of slow-spreading centers (~ 74 mm a–1 vs. 0–40 mm a–1). The AAD rift valleys show a marked contrast with the axial high that characterizes the SEIR east of the AAD. This change in axial morphology is coincident with a large (~ 1 km) deepening of the spreading axis. The segmentation characteristics of the AAD are analogous to those of the slow-spreading Mid-Atlantic Ridge, as opposed to the SEIR east of the AAD, which exhibits segmentation characteristics typical of fast-spreading centers. Thus, the spreading center within and east of the AAD contains much of the range of global variability in accretionary processes, yet it is a region free from spreading rate variations and the volumetric and chemical influences of hotspots. We suggest that the axial morphology and segmentation characteristics of the AAD spreading centers are the result of the presence of cooler than normal mantle. The presence of a cool mantle and the subsequent diminution of magma supply at a constant spreading rate may engender the creation of anomalously thick brittle lithosphere within the AAD, a condition which favor, the creation of an axial rift valley and of thin oceanic crust, in agreement with petrologic studies. The morphologies of transform and non-transform discontinuities within the Discordance also possess characteristics consistent with the creation of anomalously thick lithosphere in the region. The upper mantle viscosity structure which results from lower mantle temperatures and melt production rates may account for the similarity in segmentation characteristics between the AAD and slow-spreading centers. The section of the AAD which overlies the isotopic boundary is associated with chaotic seafloor which may be caused by an erratic pattern of magmatism and/or complex deformation associated with mantle convergence. Finally, the pattern of abyssal hill terrain within a portion of the AAD supports previous models for the formation of abyssal hills at intermediate- and slow-spreading ridges, and provides insights into how asymmetric spreading is achieved in this region.  相似文献   
527.
528.
Abstract. The slow rate of change in hydrocarbon seep communities on the upper ­Louisiana slope prevents the use of direct observation in studying successional trends. We used a chronosequence consisting of three presumed stages – juvenile, adult and senescent – to test a previous model which proposed that sulfide availability and vestimentiferan growth and physiological health decline over the lifespan of a vestimenti­feran aggregation. We replicated the chronosequence at two sites to simultaneously ­explore the influence of spatial heterogeneity on the characteristics of these communities. We determined environmental sulfide concentrations and vestimentiferan growth and condition in at least two vestimentiferan aggregations representative of each stage at each of these two sites. Hydrogen sulfide concentrations were highly variable both above and below the sediment's surface, and sulfide was present in high concentrations to sediment depths of 70  cm. Vestimentiferan growth and condition varied significantly on multiple spatial scales from sites separated by tens of kilometers, to aggregations separated by tens to hundreds of meters within a site, to individual vestimentiferans ­separated by tens of centimeters within an aggregation. The striking variability in both environmental sulfide and vestimentiferan growth and condition within individual ­aggregations suggests a crucial role for microhabitat variability in the persistence of vestimentiferan aggregations at these sites. Few significant successional trends in ­environmental sulfide or vestimentiferan growth and condition were found over the three stages tested.  相似文献   
529.
There is increasing interest among ecologists about how the type of matrix surrounding a habitat patch influences the organisms living in that patch. This question is virtually unstudied in marine systems. In this paper I show that the mobile faunal assemblage in seagrass patches does depend on the surrounding matrix. Faunal assemblages in patches of Posidonia surrounded by sand are different than in those surrounded by Heterozostera, another seagrass, having more than double the abundance of both amphipods and polychaetes. However, the differences are not simply due to spillover from the matrix habitat, but rather are an emergent property of the patch context that cannot be predicted. Posidonia surrounded by sand actually has an assemblage that is intermediate between Heterozostera and Posidonia surrounded by Heterozostera. Differences in habitat structure do not account for this pattern, as seagrass biomass did not vary, and the same result was found in artificial seagrass. The faunal assemblage did not vary depending on the location within the patch (edge or centre) for Heterozostera, Posidonia or artificial seagrass. Patch size, however, did have an effect for Heterozostera, with smaller patches having 2–3 times as many isopods per sample as large, but less than half the number of some amphipod families. These results suggest that the landscape context is as important in marine systems as it is known to be in terrestrial systems.  相似文献   
530.
Potential protonation sites for, kyanite, sillimanite, and andalusite, located in a mapping of the (3, −3) critical points displayed by their L(r) = −∇2ρ(r) distributions, are compared with polarized single-crystal FTIR spectra of kyanite and sillimanite determined earlier and with andalusite measured in this study. For andalusite, seven peaks were observed when the electric vector, E, is parallel to [100]: four intense ones at 3,440, 3,460, 3,526, and 3,597 cm−1 and three weaker ones at 3,480, 3,520, and 3,653 cm−1. Six peaks, three intense ones at 3,440, 3,460, and 3,526 cm−1 and three weaker ones at 3,480, 3,520, and 3,653 cm−1 when E parallels [010]. No peaks were observed when E is parallel to [001]. The concentration of water in andalusite varies between 110 and 168 ppm by weight % H2O. Polarized FTIR spectra indicate that the OH vector is parallel to (001) in andalusite and sillimanite and in kyanite. Examination of the L(r) (3, −3) critical points in comparison with the polarized FTIR indicates that H prefers to bond to the oxygen atoms O1 and O2 in andalusite and O2 and O4 in sillimanite which correspond to the underbonded oxygen atoms and those with the largest L(r) maxima. In kyanite, comparison of the FTIR spectrum and the critical points indicates that H will preferentially bond to the two 4-coordinated O2 and O6 atoms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号